Cover image
Try Now
2024-12-27

模型上下文协议(MCP)服务器使用Google Or-Tools实施约束解决

3 years

Works with Finder

1

Github Watches

1

Github Forks

9

Github Stars

MCP-ORTools

A Model Context Protocol (MCP) server implementation using Google OR-Tools for constraint solving. Designed for use with Large Language Models through standardized constraint model specification.

Overview

MCP-ORTools integrates Google's OR-Tools constraint programming solver with Large Language Models through the Model Context Protocol, enabling AI models to:

  • Submit and validate constraint models
  • Set model parameters
  • Solve constraint satisfaction and optimization problems
  • Retrieve and analyze solutions

Installation

  1. Install the package:
pip install git+https://github.com/Jacck/mcp-ortools.git
  1. Configure Claude Desktop Create the configuration file at %APPDATA%\Claude\claude_desktop_config.json (Windows) or ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):
{
  "mcpServers": {
    "ortools": {
      "command": "python",
      "args": ["-m", "mcp_ortools.server"]
    }
  }
}

Model Specification

Models are specified in JSON format with three main sections:

  • variables: Define variables and their domains
  • constraints: List of constraints using OR-Tools methods
  • objective: Optional optimization objective

Constraint Syntax

Constraints must use OR-Tools method syntax:

  • .__le__() for less than or equal (<=)
  • .__ge__() for greater than or equal (>=)
  • .__eq__() for equality (==)
  • .__ne__() for not equal (!=)

Usage Examples

Simple Optimization Model

{
    "variables": [
        {"name": "x", "domain": [0, 10]},
        {"name": "y", "domain": [0, 10]}
    ],
    "constraints": [
        "(x + y).__le__(15)",
        "x.__ge__(2 * y)"
    ],
    "objective": {
        "expression": "40 * x + 100 * y",
        "maximize": true
    }
}

Knapsack Problem

Example: Select items with values [3,1,2,1] and weights [2,2,1,1] with total weight limit of 2.

{
    "variables": [
        {"name": "p0", "domain": [0, 1]},
        {"name": "p1", "domain": [0, 1]},
        {"name": "p2", "domain": [0, 1]},
        {"name": "p3", "domain": [0, 1]}
    ],
    "constraints": [
        "(2*p0 + 2*p1 + p2 + p3).__le__(2)"
    ],
    "objective": {
        "expression": "3*p0 + p1 + 2*p2 + p3",
        "maximize": true
    }
}

Additional constraints example:

{
    "constraints": [
        "p0.__eq__(1)",         // Item p0 must be selected
        "p1.__ne__(p2)",        // Can't select both p1 and p2
        "(p2 + p3).__ge__(1)"   // Must select at least one of p2 or p3
    ]
}

Features

  • Full OR-Tools CP-SAT solver support
  • JSON-based model specification
  • Support for:
    • Integer and boolean variables (domain: [min, max])
    • Linear constraints using OR-Tools method syntax
    • Linear optimization objectives
    • Timeouts and solver parameters
    • Binary constraints and relationships
    • Portfolio selection problems
    • Knapsack problems

Supported Operations in Constraints

  • Basic arithmetic: +, -, *
  • Comparisons: .le(), .ge(), .eq(), .ne()
  • Linear combinations of variables
  • Binary logic through combinations of constraints

Development

To setup for development:

git clone https://github.com/Jacck/mcp-ortools.git
cd mcp-ortools
pip install -e .

Model Response Format

The solver returns solutions in JSON format:

{
    "status": "OPTIMAL",
    "solve_time": 0.045,
    "variables": {
        "p0": 0,
        "p1": 0,
        "p2": 1,
        "p3": 1
    },
    "objective_value": 3.0
}

Status values:

  • OPTIMAL: Found optimal solution
  • FEASIBLE: Found feasible solution
  • INFEASIBLE: No solution exists
  • UNKNOWN: Could not determine solution

License

MIT License - see LICENSE file for details

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Andris Teikmanis
  • Latvian GPT assistant for developing GPT applications

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Navid RezaeiSarchoghaei
  • Professional Flask/SQLAlchemy code guide. Follow: https://x.com/navid_re

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • https://cantaspinar.com
  • Summarizes videos and answers related questions.

  • Khalid kalib
  • Write professional emails

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://tovuti.be
  • Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • OffchainLabs
  • 进行以太坊的实施

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

  • deemkeen
  • 用电源组合控制您的MBOT2:MQTT+MCP+LLM

  • zhaoyunxing92
  • MCP(消息连接器协议)服务

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

    Reviews

    1 (1)
    Avatar
    user_2Qcp1tLS
    2025-04-16

    As a loyal user of mcp-ortools, I highly recommend this brilliant tool by Jacck. It seamlessly integrates with various applications and provides exceptional optimization solutions. The comprehensive documentation and active support community enhance its usability. Explore its features at https://github.com/Jacck/mcp-ortools and elevate your projects with mcp-ortools!