I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-Ortools
模型上下文协议(MCP)服务器使用Google Or-Tools实施约束解决
3 years
Works with Finder
1
Github Watches
1
Github Forks
9
Github Stars
MCP-ORTools
A Model Context Protocol (MCP) server implementation using Google OR-Tools for constraint solving. Designed for use with Large Language Models through standardized constraint model specification.
Overview
MCP-ORTools integrates Google's OR-Tools constraint programming solver with Large Language Models through the Model Context Protocol, enabling AI models to:
- Submit and validate constraint models
- Set model parameters
- Solve constraint satisfaction and optimization problems
- Retrieve and analyze solutions
Installation
- Install the package:
pip install git+https://github.com/Jacck/mcp-ortools.git
- Configure Claude Desktop
Create the configuration file at
%APPDATA%\Claude\claude_desktop_config.json
(Windows) or~/Library/Application Support/Claude/claude_desktop_config.json
(macOS):
{
"mcpServers": {
"ortools": {
"command": "python",
"args": ["-m", "mcp_ortools.server"]
}
}
}
Model Specification
Models are specified in JSON format with three main sections:
-
variables
: Define variables and their domains -
constraints
: List of constraints using OR-Tools methods -
objective
: Optional optimization objective
Constraint Syntax
Constraints must use OR-Tools method syntax:
-
.__le__()
for less than or equal (<=) -
.__ge__()
for greater than or equal (>=) -
.__eq__()
for equality (==) -
.__ne__()
for not equal (!=)
Usage Examples
Simple Optimization Model
{
"variables": [
{"name": "x", "domain": [0, 10]},
{"name": "y", "domain": [0, 10]}
],
"constraints": [
"(x + y).__le__(15)",
"x.__ge__(2 * y)"
],
"objective": {
"expression": "40 * x + 100 * y",
"maximize": true
}
}
Knapsack Problem
Example: Select items with values [3,1,2,1] and weights [2,2,1,1] with total weight limit of 2.
{
"variables": [
{"name": "p0", "domain": [0, 1]},
{"name": "p1", "domain": [0, 1]},
{"name": "p2", "domain": [0, 1]},
{"name": "p3", "domain": [0, 1]}
],
"constraints": [
"(2*p0 + 2*p1 + p2 + p3).__le__(2)"
],
"objective": {
"expression": "3*p0 + p1 + 2*p2 + p3",
"maximize": true
}
}
Additional constraints example:
{
"constraints": [
"p0.__eq__(1)", // Item p0 must be selected
"p1.__ne__(p2)", // Can't select both p1 and p2
"(p2 + p3).__ge__(1)" // Must select at least one of p2 or p3
]
}
Features
- Full OR-Tools CP-SAT solver support
- JSON-based model specification
- Support for:
- Integer and boolean variables (domain: [min, max])
- Linear constraints using OR-Tools method syntax
- Linear optimization objectives
- Timeouts and solver parameters
- Binary constraints and relationships
- Portfolio selection problems
- Knapsack problems
Supported Operations in Constraints
- Basic arithmetic: +, -, *
- Comparisons: .le(), .ge(), .eq(), .ne()
- Linear combinations of variables
- Binary logic through combinations of constraints
Development
To setup for development:
git clone https://github.com/Jacck/mcp-ortools.git
cd mcp-ortools
pip install -e .
Model Response Format
The solver returns solutions in JSON format:
{
"status": "OPTIMAL",
"solve_time": 0.045,
"variables": {
"p0": 0,
"p1": 0,
"p2": 1,
"p3": 1
},
"objective_value": 3.0
}
Status values:
- OPTIMAL: Found optimal solution
- FEASIBLE: Found feasible solution
- INFEASIBLE: No solution exists
- UNKNOWN: Could not determine solution
License
MIT License - see LICENSE file for details
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Professional Flask/SQLAlchemy code guide. Follow: https://x.com/navid_re
Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven
Reviews

user_2Qcp1tLS
As a loyal user of mcp-ortools, I highly recommend this brilliant tool by Jacck. It seamlessly integrates with various applications and provides exceptional optimization solutions. The comprehensive documentation and active support community enhance its usability. Explore its features at https://github.com/Jacck/mcp-ortools and elevate your projects with mcp-ortools!