Cover image
Try Now
2025-03-23

for symbolic computation and mathematical calculations, especially quantum computing

3 years

Works with Finder

1

Github Watches

1

Github Forks

8

Github Stars

symbolica-mcp

A scientific computing Model Context Protocol (MCP) server allows AI, such as Claude, to perform symbolic computing, conduct calculations, analyze data, and generate visualizations. This is particularly useful for scientific and engineering applications, including quantum computing, all within a containerized environment.

Features

  • Run scientific computing operations with NumPy, SciPy, SymPy, Pandas
  • Perform symbolic mathematics and solve differential equations
  • Support for linear algebra operations and matrix manipulations
  • Quantum computing analysis
  • Create data visualizations with Matplotlib and Seaborn
  • Perform machine learning operations with scikit-learn
  • Execute tensor operations and complex matrix calculations
  • Analyze data sets with statistical tools
  • Cross-platform support (automatically detects Windows, macOS, and Linux), especially for users with Mac M series chips
  • Works on both Intel/AMD (x86_64) and ARM processors

Quick Start

Using the Docker image

# Pull the image from Docker Hub
docker pull ychen94/computing-mcp:latest

# Run the container (automatically detects host OS)
docker run -i --rm -v /tmp:/app/shared ychen94/computing-mcp:latest

For Windows users:

docker run -i --rm -v $env:TEMP:/app/shared ychen94/computing-mcp:latest

Integrating with Claude for Desktop

  1. Open Claude for Desktop
  2. Open Settings ➝ Developer ➝ Edit Config
  3. Add the following configuration:

For MacOS/Linux:

{
  "mcpServers": {
    "computing-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "/tmp:/app/shared",
        "ychen94/computing-mcp:latest"
      ]
    }
  }
}

For Windows:

{
  "mcpServers": {
    "computing-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "%TEMP%:/app/shared",
        "ychen94/computing-mcp:latest"
      ]
    }
  }
}

Examples

Tensor Products

Can you calculate and visualize the tensor product of two matrices? Please run:

import numpy as np
import matplotlib.pyplot as plt

# Define two matrices
A = np.array([[1, 2], 
              [3, 4]])
B = np.array([[5, 6],
              [7, 8]])

# Calculate tensor product using np.kron (Kronecker product)
tensor_product = np.kron(A, B)

# Display the result
print("Matrix A:")
print(A)
print("\nMatrix B:")
print(B)
print("\nTensor Product A ⊗ B:")
print(tensor_product)

# Create a visualization of the tensor product
plt.figure(figsize=(8, 6))
plt.imshow(tensor_product, cmap='viridis')
plt.colorbar(label='Value')
plt.title('Visualization of Tensor Product A ⊗ B')

Symbolic Mathematics

Can you solve this differential equation? Please run:
import sympy as sp
import matplotlib.pyplot as plt
import numpy as np

# Define symbolic variable
x = sp.Symbol('x')
y = sp.Function('y')(x)

# Define the differential equation: y''(x) + 2*y'(x) + y(x) = 0
diff_eq = sp.Eq(sp.diff(y, x, 2) + 2*sp.diff(y, x) + y, 0)

# Solve the equation
solution = sp.dsolve(diff_eq)
print("Solution:")
print(solution)

# Plot a particular solution (C1=1, C2=0)
solution_func = solution.rhs.subs({sp.symbols('C1'): 1, sp.symbols('C2'): 0})
print("Particular solution:")
print(solution_func)

# Create a numerical function we can evaluate
solution_lambda = sp.lambdify(x, solution_func)

# Plot the solution
x_vals = np.linspace(0, 5, 100)
y_vals = [float(solution_lambda(x_val)) for x_val in x_vals]

plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals)
plt.grid(True)
plt.title("Solution to y''(x) + 2*y'(x) + y(x) = 0")
plt.xlabel('x')
plt.ylabel('y(x)')
plt.show()

Data Analysis

Can you perform a clustering analysis on this dataset? Please run:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

# Create a sample dataset
np.random.seed(42)
n_samples = 300

# Create three clusters
cluster1 = np.random.normal(loc=[2, 2], scale=0.5, size=(n_samples//3, 2))
cluster2 = np.random.normal(loc=[7, 7], scale=0.5, size=(n_samples//3, 2))
cluster3 = np.random.normal(loc=[2, 7], scale=0.5, size=(n_samples//3, 2))

# Combine clusters
X = np.vstack([cluster1, cluster2, cluster3])

# Create DataFrame
df = pd.DataFrame(X, columns=['Feature1', 'Feature2'])
print(df.head())

# Standardize data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Apply KMeans clustering
kmeans = KMeans(n_clusters=3, random_state=42)
df['Cluster'] = kmeans.fit_predict(X_scaled)

# Plot the clusters
plt.figure(figsize=(10, 6))
for cluster_id in range(3):
    cluster_data = df[df['Cluster'] == cluster_id]
    plt.scatter(cluster_data['Feature1'], cluster_data['Feature2'], 
                label=f'Cluster {cluster_id}', alpha=0.7)

# Plot cluster centers
centers = scaler.inverse_transform(kmeans.cluster_centers_)
plt.scatter(centers[:, 0], centers[:, 1], s=200, c='red', marker='X', label='Centers')

plt.title('K-Means Clustering Results')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.grid(True)

Quantum Computing

quantum example

Gallery

laser physics: laser

elliptic integral: elliptic integral elliptic integral pic

Troubleshooting

Common Issues

  1. Permission errors with volume mounts

    • Ensure the mount directory exists and has appropriate permissions
  2. Plot pciture files not appearing

    • Check the path in your host system: /tmp for macOS/Linux or your temp folder for Windows

    • Verify Docker has permissions to write to the mount location

    • check the mcp tool's output content find the pic then open it in the terminal or your picture viewer.

      ⭐️ ⭐️ I use the iterm-mcp-server or other terminals' mcp servers to open the file without interrupting your workflow. ⭐️ ⭐️

Support

If you encounter issues, please open a GitHub issue with:

  1. Error messages
  2. Your operating system and Docker version
  3. Steps to reproduce the problem

License

This project is licensed under the MIT License.
For more details, please see the LICENSE file in this project repository.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • momi
  • Provides initial medical assessments and advice.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • albert tan
  • Japanese education, creating tailored learning experiences.

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

  • zhaoyunxing92
  • 本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • justmywyw
  • Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.

    Reviews

    4 (1)
    Avatar
    user_Y8NZ31pB
    2025-04-15

    As a dedicated user of the Github MCP Server by MCP-Mirror, I must say this tool is a game-changer for my projects! The seamless integration and intuitive interface make managing repositories a breeze. Kudos to MCP-Mirror for developing such an efficient solution. Highly recommend this to anyone looking to streamline their workflow on GitHub!