Cover image
Try Now
2025-03-30

Standalone MCP server for enabling memory for Claude through a knowledge graph

3 years

Works with Finder

1

Github Watches

0

Github Forks

0

Github Stars

Knowledge Graph Memory Server

Note: This project was extracted from modelcontextprotocol/servers to create a standalone implementation.

A basic implementation of persistent memory using a local knowledge graph. This lets Claude remember information about the user across chats.

Core Concepts

Entities

Entities are the primary nodes in the knowledge graph. Each entity has:

  • A unique name (identifier)
  • An entity type (e.g., "person", "organization", "event")
  • A list of observations

Example:

{
  "name": "John_Smith",
  "entityType": "person",
  "observations": ["Speaks fluent Spanish"]
}

Relations

Relations define directed connections between entities. They are always stored in active voice and describe how entities interact or relate to each other.

Example:

{
  "from": "John_Smith",
  "to": "Anthropic",
  "relationType": "works_at"
}

Observations

Observations are discrete pieces of information about an entity. They are:

  • Stored as strings
  • Attached to specific entities
  • Can be added or removed independently
  • Should be atomic (one fact per observation)

Example:

{
  "entityName": "John_Smith",
  "observations": [
    "Speaks fluent Spanish",
    "Graduated in 2019",
    "Prefers morning meetings"
  ]
}

API

Tools

  • create_entities

    • Create multiple new entities in the knowledge graph
    • Input: entities (array of objects)
      • Each object contains:
        • name (string): Entity identifier
        • entityType (string): Type classification
        • observations (string[]): Associated observations
    • Ignores entities with existing names
  • create_relations

    • Create multiple new relations between entities
    • Input: relations (array of objects)
      • Each object contains:
        • from (string): Source entity name
        • to (string): Target entity name
        • relationType (string): Relationship type in active voice
    • Skips duplicate relations
  • add_observations

    • Add new observations to existing entities
    • Input: observations (array of objects)
      • Each object contains:
        • entityName (string): Target entity
        • contents (string[]): New observations to add
    • Returns added observations per entity
    • Fails if entity doesn't exist
  • delete_entities

    • Remove entities and their relations
    • Input: entityNames (string[])
    • Cascading deletion of associated relations
    • Silent operation if entity doesn't exist
  • delete_observations

    • Remove specific observations from entities
    • Input: deletions (array of objects)
      • Each object contains:
        • entityName (string): Target entity
        • observations (string[]): Observations to remove
    • Silent operation if observation doesn't exist
  • delete_relations

    • Remove specific relations from the graph
    • Input: relations (array of objects)
      • Each object contains:
        • from (string): Source entity name
        • to (string): Target entity name
        • relationType (string): Relationship type
    • Silent operation if relation doesn't exist
  • read_graph

    • Read the entire knowledge graph
    • No input required
    • Returns complete graph structure with all entities and relations
  • search_nodes

    • Search for nodes based on query
    • Input: query (string)
    • Searches across:
      • Entity names
      • Entity types
      • Observation content
    • Returns matching entities and their relations
  • open_nodes

    • Retrieve specific nodes by name
    • Input: names (string[])
    • Returns:
      • Requested entities
      • Relations between requested entities
    • Silently skips non-existent nodes

Usage with Claude Desktop

Setup

Add this to your claude_desktop_config.json:

Docker

{
  "mcpServers": {
    "memory": {
      "command": "docker",
      "args": ["run", "-i", "-v", "claude-memory:/app/dist", "--rm", "mcp/memory"]
    }
  }
}

NPX

{
  "mcpServers": {
    "memory": {
      "command": "npx",
      "args": [
        "-y",
        "@modelcontextprotocol/server-memory"
      ]
    }
  }
}

NPX with custom setting

The server can be configured using the following environment variables:

{
  "mcpServers": {
    "memory": {
      "command": "npx",
      "args": [
        "-y",
        "@modelcontextprotocol/server-memory"
      ],
      "env": {
        "MEMORY_FILE_PATH": "/path/to/custom/memory.json"
      }
    }
  }
}
  • MEMORY_FILE_PATH: Path to the memory storage JSON file (default: memory.json in the server directory)

System Prompt

The prompt for utilizing memory depends on the use case. Changing the prompt will help the model determine the frequency and types of memories created.

Here is an example prompt for chat personalization. You could use this prompt in the "Custom Instructions" field of a Claude.ai Project.

Follow these steps for each interaction:

1. User Identification:
   - You should assume that you are interacting with default_user
   - If you have not identified default_user, proactively try to do so.

2. Memory Retrieval:
   - Always begin your chat by saying only "Remembering..." and retrieve all relevant information from your knowledge graph
   - Always refer to your knowledge graph as your "memory"

3. Memory
   - While conversing with the user, be attentive to any new information that falls into these categories:
     a) Basic Identity (age, gender, location, job title, education level, etc.)
     b) Behaviors (interests, habits, etc.)
     c) Preferences (communication style, preferred language, etc.)
     d) Goals (goals, targets, aspirations, etc.)
     e) Relationships (personal and professional relationships up to 3 degrees of separation)

4. Memory Update:
   - If any new information was gathered during the interaction, update your memory as follows:
     a) Create entities for recurring organizations, people, and significant events
     b) Connect them to the current entities using relations
     b) Store facts about them as observations

Building

Docker:

docker build -t mcp/memory -f src/Dockerfile . 

Usage as a standalone package

To use this as a standalone package:

npm install mcp-memory-server

Or directly with npx:

npx mcp-memory-server

License

This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

相关推荐

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • 林乔安妮
  • A fashion stylist GPT offering outfit suggestions for various scenarios.

  • 田中 楓太
  • A virtual science instructor for engaging and informative lessons.

  • ariofarmani
  • Test repository for GitHub MCP server functionality

  • 1Panel-dev
  • 💬 MaxKB is an open-source AI assistant for enterprise. It seamlessly integrates RAG pipelines, supports robust workflows, and provides MCP tool-use capabilities.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • Mintplex-Labs
  • The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.

  • GLips
  • MCP server to provide Figma layout information to AI coding agents like Cursor

    Reviews

    4 (1)
    Avatar
    user_1TRffw5g
    2025-04-16

    As a dedicated user of mcp-memory-server, I highly recommend this project. Developed by s2005, it offers robust memory handling and efficient performance. Easy to navigate with clear documentation on the GitHub page, it's a must-have for developers needing reliable memory management solutions. Check it out at: https://github.com/s2005/mcp-memory-server.