
pymcp-sse
Asynchronous Python library for building Model Context Protocol (MCP) servers and clients over HTTP/SSE, ideal for AI agents, tool integrations, and chatbot ecosystems.
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
pymcp-sse: Python MCP over SSE Library
A lightweight, flexible implementation of the Model Context Protocol (MCP) for Python applications, specializing in robust HTTP/SSE transport.
Features
-
Modular Framework: Clean implementation of
BaseMCPServer
,BaseMCPClient
, andMultiMCPClient
. - HTTP/SSE Transport: Robust HTTP/SSE implementation with automatic session management, configurable timeouts, and reconnection handling.
-
Concurrent Task Execution:
BaseMCPServer.run_with_tasks()
method for easily running servers with persistent background asynchronous tasks. -
Tool Registration & Discovery: Simple decorator-based tool registration (
@server.register_tool()
) and a standarddescribe_tools
endpoint for clients to dynamically query detailed tool capabilities (parameters, descriptions). -
Server Push: Built-in support for server-initiated push notifications to clients and periodic keep-alive pings. Includes
NotificationScheduler
helper class. -
LLM Integration: Includes
BaseLLMClient
abstraction for easy integration with various LLM providers (an Anthropic Claude example is provided). -
Flexible Logging: Configurable logging via
pymcp_sse.utils
.
Installation
To install the library locally for development:
# Navigate to the directory containing pyproject.toml
cd /path/to/your/pymcp-sse
# Install in editable mode
pip install -e .
(Once published, installation via pip install pymcp-sse
will be available.)
Basic Usage
Creating an MCP Server (Simple)
from pymcp_sse.server import BaseMCPServer
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
# Create a server instance
server = BaseMCPServer("My Simple Server")
# Register tools using the decorator
# Type hints are used by describe_tools
@server.register_tool("echo")
async def echo_tool(text: str) -> dict:
'''Echoes the provided text back.'''
return {"response": f"Echo: {text}"}
# Run the server using the standard method
if __name__ == "__main__":
# Additional kwargs are passed to uvicorn.run (e.g., timeout_keep_alive=65)
server.run(host="0.0.0.0", port=8000)
Creating an MCP Server (with Background Tasks)
import asyncio
from pymcp_sse.server import BaseMCPServer
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
# Create a server instance
server = BaseMCPServer("My Background Task Server")
# Define your background task
async def my_periodic_task():
while True:
print("Task running...")
await asyncio.sleep(5)
# Define a shutdown callback
async def cleanup():
print("Cleaning up...")
# Run the server using run_with_tasks
async def main():
await server.run_with_tasks(
host="0.0.0.0",
port=8001,
concurrent_tasks=[my_periodic_task],
shutdown_callbacks=[cleanup]
)
if __name__ == "__main__":
asyncio.run(main())
Creating a Single Client
import asyncio
from pymcp_sse.client import BaseMCPClient
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
async def main():
# Configure timeouts for stability (read timeout > server ping interval)
client = BaseMCPClient(
"http://localhost:8000", # Point to your server
http_read_timeout=65,
http_connect_timeout=10
)
try:
# Connect and initialize
if await client.connect() and await client.initialize():
print(f"Connected. Available tools: {client.available_tools}")
# Call a tool
result = await client.call_tool("echo", text="Hello, world!")
print(f"Tool Result: {result}")
# Assign a notification handler if needed
# client.notification_handler = your_async_handler
except Exception as e:
print(f"An error occurred: {e}")
finally:
await client.close()
if __name__ == "__main__":
asyncio.run(main())
Creating a Multi-Server Client
import asyncio
from pymcp_sse.client import MultiMCPClient
from pymcp_sse.utils import configure_logging
configure_logging() # Configure logging (optional)
async def main():
# Use servers from the examples section
servers = {
"server_basic": "http://localhost:8101",
"server_tasks": "http://localhost:8102"
}
# Configure timeouts for stability (read timeout > server ping interval)
client = MultiMCPClient(
servers,
http_read_timeout=65,
http_connect_timeout=10
)
try:
# Connect to all servers (automatically fetches tool details if describe_tools exists)
connection_results = await client.connect_all()
print(f"Connection Results: {connection_results}")
# Get info about connected servers (including tool details)
server_info = client.get_server_info()
print("\nServer Info:")
for name, info in server_info.items():
print(f"- {name}: Status={info['status']}, Tools={len(info.get('available_tools', []))}, Details Fetched={bool(info.get('tool_details'))}")
# Call a tool on a specific server
if server_info.get("server_basic", {}).get("status") == "connected":
result = await client.call_tool("server_basic", "echo", text="Hello from MultiClient!")
print(f"\nServer Basic Echo Result: {result}")
except Exception as e:
print(f"An error occurred: {e}")
finally:
await client.close()
if __name__ == "__main__":
asyncio.run(main())
Documentation
For more detailed usage instructions, notes on the HTTP/SSE implementation, guides on LLM integration, and the protocol specification, please refer to the documentation in the docs/
directory.
Examples
See the examples/
directory for complete working examples, including:
-
server_basic
: Demonstrates a simple server usingserver.run()
. -
server_tasks
: Demonstrates a server with background tasks (notification scheduler) usingserver.run_with_tasks()
. -
client
: A multi-server client usingMultiMCPClient
and anLLMAgent
to interact with both servers via natural language. Requires an API key (setANTHROPIC_API_KEY
in a.env
file in the project root). -
run_all.py
: A launcher script to easily startserver_basic
,server_tasks
, and theclient
simultaneously. -
notification_listener.py
: A simple standalone client for receiving push notifications from any compatible server.
License
MIT
相关推荐
I find academic articles and books for research and literature reviews.
Converts Figma frames into front-end code for various mobile frameworks.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
Delivers concise Python code and interprets non-English comments
💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
MCP server to provide Figma layout information to AI coding agents like Cursor
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
Reviews

user_d44JZSeR
As a dedicated user of mcp applications, I find pymcp-sse to be an exceptional tool. Authored by rvirgilli, this product offers seamless integration and user-friendly features. The project hosted on GitHub reflects high-quality craftsmanship and meticulous attention to detail. Highly recommend checking out pymcp-sse for your secure server events needs!