
fastmcp
A TypeScript framework for building MCP servers.
3 years
Works with Finder
11
Github Watches
75
Github Forks
1.1k
Github Stars
FastMCP
A TypeScript framework for building MCP servers capable of handling client sessions.
[!NOTE]
For a Python implementation, see FastMCP.
Features
- Simple Tool, Resource, Prompt definition
- Authentication
- Sessions
- Image content
- Logging
- Error handling
- SSE
- CORS (enabled by default)
- Progress notifications
- Typed server events
- Prompt argument auto-completion
- Sampling
- Automated SSE pings
- Roots
- CLI for testing and debugging
Installation
npm install fastmcp
Quickstart
[!NOTE]
There are many real-world examples of using FastMCP in the wild. See the Showcase for examples.
import { FastMCP } from "fastmcp";
import { z } from "zod"; // Or any validation library that supports Standard Schema
const server = new FastMCP({
name: "My Server",
version: "1.0.0",
});
server.addTool({
name: "add",
description: "Add two numbers",
parameters: z.object({
a: z.number(),
b: z.number(),
}),
execute: async (args) => {
return String(args.a + args.b);
},
});
server.start({
transportType: "stdio",
});
That's it! You have a working MCP server.
You can test the server in terminal with:
git clone https://github.com/punkpeye/fastmcp.git
cd fastmcp
pnpm install
pnpm build
# Test the addition server example using CLI:
npx fastmcp dev src/examples/addition.ts
# Test the addition server example using MCP Inspector:
npx fastmcp inspect src/examples/addition.ts
SSE
Server-Sent Events (SSE) provide a mechanism for servers to send real-time updates to clients over an HTTPS connection. In the context of MCP, SSE is primarily used to enable remote MCP communication, allowing an MCP hosted on a remote machine to be accessed and relay updates over the network.
You can also run the server with SSE support:
server.start({
transportType: "sse",
sse: {
endpoint: "/sse",
port: 8080,
},
});
This will start the server and listen for SSE connections on http://localhost:8080/sse
.
You can then use SSEClientTransport
to connect to the server:
import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse.js";
const client = new Client(
{
name: "example-client",
version: "1.0.0",
},
{
capabilities: {},
},
);
const transport = new SSEClientTransport(new URL(`http://localhost:8080/sse`));
await client.connect(transport);
Core Concepts
Tools
Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions.
FastMCP uses the Standard Schema specification for defining tool parameters. This allows you to use your preferred schema validation library (like Zod, ArkType, or Valibot) as long as it implements the spec.
Zod Example:
import { z } from "zod";
server.addTool({
name: "fetch-zod",
description: "Fetch the content of a url (using Zod)",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return await fetchWebpageContent(args.url);
},
});
ArkType Example:
import { type } from "arktype";
server.addTool({
name: "fetch-arktype",
description: "Fetch the content of a url (using ArkType)",
parameters: type({
url: "string",
}),
execute: async (args) => {
return await fetchWebpageContent(args.url);
},
});
Valibot Example:
Valibot requires the peer dependency @valibot/to-json-schema.
import * as v from "valibot";
server.addTool({
name: "fetch-valibot",
description: "Fetch the content of a url (using Valibot)",
parameters: v.object({
url: v.string(),
}),
execute: async (args) => {
return await fetchWebpageContent(args.url);
},
});
Returning a string
execute
can return a string:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return "Hello, world!";
},
});
The latter is equivalent to:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return {
content: [
{
type: "text",
text: "Hello, world!",
},
],
};
},
});
Returning a list
If you want to return a list of messages, you can return an object with a content
property:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return {
content: [
{ type: "text", text: "First message" },
{ type: "text", text: "Second message" },
],
};
},
});
Returning an image
Use the imageContent
to create a content object for an image:
import { imageContent } from "fastmcp";
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return imageContent({
url: "https://example.com/image.png",
});
// or...
// return imageContent({
// path: "/path/to/image.png",
// });
// or...
// return imageContent({
// buffer: Buffer.from("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=", "base64"),
// });
// or...
// return {
// content: [
// await imageContent(...)
// ],
// };
},
});
The imageContent
function takes the following options:
-
url
: The URL of the image. -
path
: The path to the image file. -
buffer
: The image data as a buffer.
Only one of url
, path
, or buffer
must be specified.
The above example is equivalent to:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
return {
content: [
{
type: "image",
data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
mimeType: "image/png",
},
],
};
},
});
Logging
Tools can log messages to the client using the log
object in the context object:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args, { log }) => {
log.info("Downloading file...", {
url,
});
// ...
log.info("Downloaded file");
return "done";
},
});
The log
object has the following methods:
-
debug(message: string, data?: SerializableValue)
-
error(message: string, data?: SerializableValue)
-
info(message: string, data?: SerializableValue)
-
warn(message: string, data?: SerializableValue)
Errors
The errors that are meant to be shown to the user should be thrown as UserError
instances:
import { UserError } from "fastmcp";
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args) => {
if (args.url.startsWith("https://example.com")) {
throw new UserError("This URL is not allowed");
}
return "done";
},
});
Progress
Tools can report progress by calling reportProgress
in the context object:
server.addTool({
name: "download",
description: "Download a file",
parameters: z.object({
url: z.string(),
}),
execute: async (args, { reportProgress }) => {
reportProgress({
progress: 0,
total: 100,
});
// ...
reportProgress({
progress: 100,
total: 100,
});
return "done";
},
});
Resources
Resources represent any kind of data that an MCP server wants to make available to clients. This can include:
- File contents
- Screenshots and images
- Log files
- And more
Each resource is identified by a unique URI and can contain either text or binary data.
server.addResource({
uri: "file:///logs/app.log",
name: "Application Logs",
mimeType: "text/plain",
async load() {
return {
text: await readLogFile(),
};
},
});
[!NOTE]
load
can return multiple resources. This could be used, for example, to return a list of files inside a directory when the directory is read.async load() { return [ { text: "First file content", }, { text: "Second file content", }, ]; }
You can also return binary contents in load
:
async load() {
return {
blob: 'base64-encoded-data'
};
}
Resource templates
You can also define resource templates:
server.addResourceTemplate({
uriTemplate: "file:///logs/{name}.log",
name: "Application Logs",
mimeType: "text/plain",
arguments: [
{
name: "name",
description: "Name of the log",
required: true,
},
],
async load({ name }) {
return {
text: `Example log content for ${name}`,
};
},
});
Resource template argument auto-completion
Provide complete
functions for resource template arguments to enable automatic completion:
server.addResourceTemplate({
uriTemplate: "file:///logs/{name}.log",
name: "Application Logs",
mimeType: "text/plain",
arguments: [
{
name: "name",
description: "Name of the log",
required: true,
complete: async (value) => {
if (value === "Example") {
return {
values: ["Example Log"],
};
}
return {
values: [],
};
},
},
],
async load({ name }) {
return {
text: `Example log content for ${name}`,
};
},
});
Prompts
Prompts enable servers to define reusable prompt templates and workflows that clients can easily surface to users and LLMs. They provide a powerful way to standardize and share common LLM interactions.
server.addPrompt({
name: "git-commit",
description: "Generate a Git commit message",
arguments: [
{
name: "changes",
description: "Git diff or description of changes",
required: true,
},
],
load: async (args) => {
return `Generate a concise but descriptive commit message for these changes:\n\n${args.changes}`;
},
});
Prompt argument auto-completion
Prompts can provide auto-completion for their arguments:
server.addPrompt({
name: "countryPoem",
description: "Writes a poem about a country",
load: async ({ name }) => {
return `Hello, ${name}!`;
},
arguments: [
{
name: "name",
description: "Name of the country",
required: true,
complete: async (value) => {
if (value === "Germ") {
return {
values: ["Germany"],
};
}
return {
values: [],
};
},
},
],
});
Prompt argument auto-completion using enum
If you provide an enum
array for an argument, the server will automatically provide completions for the argument.
server.addPrompt({
name: "countryPoem",
description: "Writes a poem about a country",
load: async ({ name }) => {
return `Hello, ${name}!`;
},
arguments: [
{
name: "name",
description: "Name of the country",
required: true,
enum: ["Germany", "France", "Italy"],
},
],
});
Authentication
FastMCP allows you to authenticate
clients using a custom function:
import { AuthError } from "fastmcp";
const server = new FastMCP({
name: "My Server",
version: "1.0.0",
authenticate: ({request}) => {
const apiKey = request.headers["x-api-key"];
if (apiKey !== '123') {
throw new Response(null, {
status: 401,
statusText: "Unauthorized",
});
}
// Whatever you return here will be accessible in the `context.session` object.
return {
id: 1,
}
},
});
Now you can access the authenticated session data in your tools:
server.addTool({
name: "sayHello",
execute: async (args, { session }) => {
return `Hello, ${session.id}!`;
},
});
Sessions
The session
object is an instance of FastMCPSession
and it describes active client sessions.
server.sessions;
We allocate a new server instance for each client connection to enable 1:1 communication between a client and the server.
Typed server events
You can listen to events emitted by the server using the on
method:
server.on("connect", (event) => {
console.log("Client connected:", event.session);
});
server.on("disconnect", (event) => {
console.log("Client disconnected:", event.session);
});
FastMCPSession
FastMCPSession
represents a client session and provides methods to interact with the client.
Refer to Sessions for examples of how to obtain a FastMCPSession
instance.
requestSampling
requestSampling
creates a sampling request and returns the response.
await session.requestSampling({
messages: [
{
role: "user",
content: {
type: "text",
text: "What files are in the current directory?",
},
},
],
systemPrompt: "You are a helpful file system assistant.",
includeContext: "thisServer",
maxTokens: 100,
});
clientCapabilities
The clientCapabilities
property contains the client capabilities.
session.clientCapabilities;
loggingLevel
The loggingLevel
property describes the logging level as set by the client.
session.loggingLevel;
roots
The roots
property contains the roots as set by the client.
session.roots;
server
The server
property contains an instance of MCP server that is associated with the session.
session.server;
Typed session events
You can listen to events emitted by the session using the on
method:
session.on("rootsChanged", (event) => {
console.log("Roots changed:", event.roots);
});
session.on("error", (event) => {
console.error("Error:", event.error);
});
Running Your Server
Test with mcp-cli
The fastest way to test and debug your server is with fastmcp dev
:
npx fastmcp dev server.js
npx fastmcp dev server.ts
This will run your server with mcp-cli
for testing and debugging your MCP server in the terminal.
Inspect with MCP Inspector
Another way is to use the official MCP Inspector
to inspect your server with a Web UI:
npx fastmcp inspect server.ts
FAQ
How to use with Claude Desktop?
Follow the guide https://modelcontextprotocol.io/quickstart/user and add the following configuration:
{
"mcpServers": {
"my-mcp-server": {
"command": "npx",
"args": [
"tsx",
"/PATH/TO/YOUR_PROJECT/src/index.ts"
],
"env": {
"YOUR_ENV_VAR": "value"
}
}
}
}
Showcase
[!NOTE]
If you've developed a server using FastMCP, please submit a PR to showcase it here!
- apinetwork/piapi-mcp-server - generate media using Midjourney/Flux/Kling/LumaLabs/Udio/Chrip/Trellis
- domdomegg/computer-use-mcp - controls your computer
- LiterallyBlah/Dradis-MCP – manages projects and vulnerabilities in Dradis
- Meeting-Baas/meeting-mcp - create meeting bots, search transcripts, and manage recording data
- drumnation/unsplash-smart-mcp-server – enables AI agents to seamlessly search, recommend, and deliver professional stock photos from Unsplash
- ssmanji89/halopsa-workflows-mcp - HaloPSA Workflows integration with AI assistants
- aiamblichus/mcp-chat-adapter – provides a clean interface for LLMs to use chat completion
Acknowledgements
- FastMCP is inspired by the Python implementation by Jonathan Lowin.
- Parts of codebase were adopted from LiteMCP.
- Parts of codebase were adopted from Model Context protocolでSSEをやってみる.
相关推荐
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
跟在天堂的亲人对话。Talk to loved ones in heaven. Sponsor:小红书“ ItsJoe就出行 ”
FindetundanalysiertOnlineProdukteeinschlielichAmazonnachVolumenBewertungenundPreis
MCP server to provide Figma layout information to AI coding agents like Cursor
Python code to use the MCP3008 analog to digital converter with a Raspberry Pi or BeagleBone black.
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
Put an end to hallucinations! GitMCP is a free, open-source, remote MCP server for any GitHub project
Reviews

user_Nr2md0gi
I have been using fastmcp by punkpeye for a while, and it has significantly optimized my workflow. The simplicity and efficiency of the tool are outstanding, making complex processes smoother and faster. Highly recommend checking it out at https://github.com/punkpeye/fastmcp.