
mcp-server-playbook-2025
Model Context Protocol Quick Start Guide - 2025
3 years
Works with Finder
0
Github Watches
0
Github Forks
0
Github Stars
Quickstart Guide to Building an MCP Server in Python
Introduction
The Model Context Protocol (MCP) by Anthropic enables AI agents to interact with external tools, data sources, and services. This guide walks you through building an MCP server in Python using the official MCP Python SDK, integrating it with AI assistants, and deploying it for production use.
1. Overview of the MCP Python SDK
The MCP Python SDK provides tools to build MCP servers and clients, facilitating seamless integration between Large Language Models (LLMs) and external data sources or tools. This SDK adheres to the full MCP specification, ensuring compatibility and standardization. (GitHub Repository)
2. Installation
To integrate MCP into your Python project, it's recommended to use uv
, a Python package manager:
uv add "mcp[cli]"
Alternatively, if you're using pip
:
pip install mcp
3. Quickstart: Building an MCP Server
Let's create a simple MCP server that offers a calculator tool and a personalized greeting resource:
from mcp.server.fastmcp import FastMCP
# Initialize the MCP server
mcp = FastMCP("Demo Server")
# Define an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
"""Adds two numbers."""
return a + b
# Define a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
"""Generates a personalized greeting."""
return f"Hello, {name}!"
# Run the server
if __name__ == "__main__":
mcp.run()
4. Testing the MCP Server
To test the server using the MCP Inspector:
mcp dev server.py
This command launches the MCP Inspector, allowing you to interact with and validate the server's functionalities.
6. Client Integration
6.1. Example: For integration with AI assistants like Claude Desktop:
mcp install server.py
This command installs the server into Claude Desktop, enabling seamless interaction between the assistant and the MCP server.
6. Deployment Considerations
When deploying your MCP server:
- Security: Implement authentication mechanisms, such as API keys or OAuth, to control access.
- Scalability: Utilize containerization tools like Docker to manage deployments across various environments.
- Monitoring: Set up logging and monitoring to track server performance and diagnose issues promptly.
相关推荐
I find academic articles and books for research and literature reviews.
Converts Figma frames into front-end code for various mobile frameworks.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
Delivers concise Python code and interprets non-English comments
💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
MCP server to provide Figma layout information to AI coding agents like Cursor
Reviews

user_bbqzIcaP
I recently tried out the mcp-server-playbook-2025 by munganaai, and I'm thoroughly impressed! This comprehensive guide is incredibly well-structured and detailed, making server management tasks much more efficient. The proactive approach and clear instructions provided have significantly simplified my workflow. Highly recommended for anyone looking to enhance their server management with ease. Check it out at https://github.com/munganaai/mcp-server-playbook-2025!