Cover image
Try Now
2025-03-23

A server application designed on top of MCP to interact with Cursor and MySQL.

3 years

Works with Finder

1

Github Watches

4

Github Forks

23

Github Stars

mysql-mcp-server

한국어 README.md

0. Execution

Running with Docker

Change the database connection information as needed.

docker run -d --name mcp-mysql \
  -e MYSQL_HOST=localhost \
  -e MYSQL_PORT=3306 \
  -e MYSQL_USER=root \
  -e MYSQL_PASSWORD=mcpTest1234!!! \
  -e MYSQL_DATABASE=mcp_test \
  -e MCP_PORT=8081 \
  -p 3306:3306 mineru/mcp-mysql:1.0.0

Running with Docker Compose

This will proceed with a pre-configured setup.

docker-compose up -d

Running directly with Python

pip install -r requirements.txt
python mysql_mcp_server/main.py run

Cursor Configuration

MCP functionality is available from Cursor version 0.46 and above.

Additionally, the MCP feature is only accessible to Cursor Pro account users.

Cursor Setting

Tool Addition Tips

  • Adding a Tool
    • execute functions implement the actual logic execution (Service Layer).
    • The @tool decorator helps register the tool with MCP (Controller Layer).
  • Explanation
    • Each file under mysql_mcp_server/executors represents a single tool.
    • If a new tool is added, it must be imported in mysql_mcp_server/executors/__init__.py and included in the __all__ array.
    • This ensures the module is automatically registered in the TOOLS_DEFINITION variable.
flowchart LR;
    A[AI Model] -->|Request tool list| B[MCP Server]
    B -->|Return available tools| A

    A -->|Request specific tool execution| B
    B -->|Call the corresponding executor| C[Executors]
    
    subgraph Executors
        C1[execute_create_table] -->|Create table| D
        C2[execute_desc_table] -->|View table schema| D
        C3[execute_explain] -->|Query execution plan| D
        C4[execute_insert_query] -->|Execute INSERT query| D
        C5[execute_insight_starter] -->|Checking the schema for building reports| D
        C6[execute_invoke_viz_pro] -->|Visualization chart recommendations| D
        C7[execute_select_query] -->|Execute SELECT query| D
        C8[execute_show_tables] -->|Retrieve table list| D
    end

    D[DatabaseManager] -->|Connect to MySQL| E[MySQL 8.0]

    E -->|Return results| D
    D -->|Send results| C
    C -->|Return results| B
    B -->|Return execution results| A

🚧 Development Roadmap 🚧

  • ⚙️ Parameter Options

    • 🔧 Enable/Disable Switch for Each Tool: Provide a function to reduce Input Context costs 💰
    • 🔒 Query Security Level Setting: Offer optional control over functions that could damage asset value, such as DROP, DELETE, UPDATE 🚫
  • ✨ Features

    • 📊 Data Analysis Report Generation: Provide a report generation function optimized for the model to appropriately select various charts based on user requests 📈
      • 📝 Reporting capabilities for prescribed forms
      • 🖌️ Diversify report templates
    • 🗄️ Extended Text2SQL Support
    • 🌐 SSH Connection Support: Enable secure remote access via SSH for advanced operations 🔑
    • 📥 File Extraction Function
      • 📄 CSV
      • 📑 JSON
      • 📉 Excel

1. Overview

MCP MySQL Server is a server application for MySQL database operations based on MCP (Model Context Protocol). This server provides tools that allow AI models to interact with the MySQL database.

2. System Configuration

2.1 Key Components

  • MCP Server: A FastMCP server that communicates with AI models
  • MySQL Database: Manages and stores data
  • Tools: Executors that perform database operations

2.2 Tech Stack

  • Language: Python
  • Database: MySQL 8.0
  • Key Libraries:
    • mcp: Implements Model Context Protocol for AI communication
    • PyMySQL: Connects to MySQL and executes queries
    • pandas: Processes and analyzes data
    • python-dotenv: Manages environment variables
    • fire: Implements command-line interfaces

2.3 Deployment Environment

  • Containerized deployment via Docker and Docker Compose
  • Ports: 8081 (MCP Server), 3306 (MySQL)

3. Directory Structure

MCPBoilerPlate/
├── mysql_mcp_server/           # Main application directory
│   ├── executors/              # Database operation executors
│   │   ├── create_table.py     # Tool for creating tables
│   │   ├── desc_table.py       # Tool for viewing table schema
│   │   ├── explain.py          # Tool for query execution plans
│   │   ├── insert_query.py     # Tool for INSERT query execution
│   │   ├── insight_starter.py  # Schema verification tools for write reports
│   │   ├── invoke_viz_pro.py   # Tool for Visualization chart recommendation
│   │   ├── select_query.py     # Tool for SELECT query execution
│   │   └── show_tables.py      # Tool for retrieving table lists
│   ├── helper/                 # Utility modules
│   │   ├── db_conn_helper.py   # Manages database connections
│   │   ├── logger_helper.py    # Logging utilities
│   │   └── tool_decorator.py   # Tool decorator
│   └── main.py                 # Application entry point
├── docker-compose.yml          # Docker Compose configuration
├── Dockerfile                  # Docker image build settings
├── requirements.txt            # Dependency package list
└── .env.example                # Example environment variables file

4. Architecture Design

4.1 Layered Structure

  1. Interface Layer: MCP Server (FastMCP)
  2. Business Logic Layer: Handlers and Executors
  3. Data Access Layer: Database connection and query execution

4.2 Key Classes and Modules

  • MySQLMCPServer: Main server class that initializes and runs the MCP server
  • DatabaseManager: Singleton pattern-based database connection manager
  • Executors: Collection of tools for database operations
    • execute_create_table: Creates tables
    • execute_desc_table: Checks table schema
    • execute_explain: Provides query execution plans
    • execute_insert_query: Executes INSETR queries
    • execute_select_query: Executes SELECT queries
    • execute_show_tables: Retrieves table lists

4.3 Communication Flow

  1. AI model requests a list of available tools from the MCP server.
  2. The server returns the available tools list.
  3. The AI model requests the execution of a specific tool.
  4. The server calls the corresponding executor to perform the database operation.
  5. The execution results are returned to the AI model.

5. Scalability and Maintenance

  • Adding Tools: Implement new tools in the executors directory and register them in __init__.py.
  • Environment Configuration: Manage environment variables via the .env file.
  • Logging: Ensure consistent logging using logger_helper.

6. Deployment and Execution

6.1 Local Execution

# Setup environment
cp .env.example .env
# Modify .env file as needed

# Install dependencies
pip install -r requirements.txt

# Run the server
python mysql_mcp_server/main.py run

6.2 Docker Deployment

# Start database using Docker Compose
docker-compose up -d db
# Build and run mysql-mcp-server with Docker Compose (including rebuilds)
docker-compose up -d --build mysql-mcp-server

7. Security Considerations

  • Manage database credentials via environment variables.
  • Use strong passwords in production environments.
  • Consider implementing SSL/TLS encryption for database connections when necessary.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • momi
  • Provides initial medical assessments and advice.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • zhaoyunxing92
  • 本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

  • justmywyw
  • Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.

    Reviews

    5 (1)
    Avatar
    user_vEo92BPp
    2025-04-16

    I'm thoroughly impressed with mysql-mcp-server by Mineru98. The server functions seamlessly, providing a robust and reliable MySQL management console. The clear documentation and ease of setup are big pluses. Highly recommend for anyone looking to efficiently manage their MySQL databases. You can check it out at https://github.com/Mineru98/mysql-mcp-server.