
QAInsights_locust-mcp-server
Mirror ofhttps://github.com/QAInsights/locust-mcp-server
3 years
Works with Finder
0
Github Watches
0
Github Forks
0
Github Stars
🚀 ⚡️ locust-mcp-server
A Model Context Protocol (MCP) server implementation for running Locust load tests. This server enables seamless integration of Locust load testing capabilities with AI-powered development environments.
✨ Features
- Simple integration with Model Context Protocol framework
- Support for headless and UI modes
- Configurable test parameters (users, spawn rate, runtime)
- Easy-to-use API for running Locust load tests
- Real-time test execution output
- HTTP/HTTPS protocol support out of the box
- Custom task scenarios support
🔧 Prerequisites
Before you begin, ensure you have the following installed:
- Python 3.13 or higher
- uv package manager (Installation guide)
📦 Installation
- Clone the repository:
git clone https://github.com/yourusername/locust-mcp-server.git
- Install the required dependencies:
uv pip install -r requirements.txt
- Set up environment variables (optional):
Create a
.env
file in the project root:
LOCUST_HOST=http://localhost:8089 # Default host for your tests
LOCUST_USERS=3 # Default number of users
LOCUST_SPAWN_RATE=1 # Default user spawn rate
LOCUST_RUN_TIME=10s # Default test duration
🚀 Getting Started
- Create a Locust test script (e.g.,
hello.py
):
from locust import HttpUser, task, between
class QuickstartUser(HttpUser):
wait_time = between(1, 5)
@task
def hello_world(self):
self.client.get("/hello")
self.client.get("/world")
@task(3)
def view_items(self):
for item_id in range(10):
self.client.get(f"/item?id={item_id}", name="/item")
time.sleep(1)
def on_start(self):
self.client.post("/login", json={"username":"foo", "password":"bar"})
- Configure the MCP server using the below specs in your favorite MCP client (Claude Desktop, Cursor, Windsurf and more):
{
"mcpServers": {
"locust": {
"command": "/Users/naveenkumar/.local/bin/uv",
"args": [
"--directory",
"/Users/naveenkumar/Gits/locust-mcp-server",
"run",
"locust_server.py"
]
}
}
}
- Now ask the LLM to run the test e.g.
run locust test for hello.py
. The Locust MCP server will use the following tool to start the test:
-
run_locust
: Run a test with configurable options for headless mode, host, runtime, users, and spawn rate
📝 API Reference
Run Locust Test
run_locust(
test_file: str,
headless: bool = True,
host: str = "http://localhost:8089",
runtime: str = "10s",
users: int = 3,
spawn_rate: int = 1
)
Parameters:
-
test_file
: Path to your Locust test script -
headless
: Run in headless mode (True) or with UI (False) -
host
: Target host to load test -
runtime
: Test duration (e.g., "30s", "1m", "5m") -
users
: Number of concurrent users to simulate -
spawn_rate
: Rate at which users are spawned
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
I find academic articles and books for research and literature reviews.
Converts Figma frames into front-end code for various mobile frameworks.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
Delivers concise Python code and interprets non-English comments
💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
MCP server to provide Figma layout information to AI coding agents like Cursor
Reviews

user_UWyttIRq
QAInsights_locust-mcp-server by MCP-Mirror is an outstanding tool for performance testing. It integrates seamlessly with Locust, making it easy to manage and scale load tests. The user-friendly interface and robust features have significantly improved our testing processes. Highly recommend this to any QA engineer looking to enhance their testing toolkit. Check it out at the provided GitHub link!