Cover image
Try Now
2025-03-31

Mirror ofhttps://github.com/ProbonoBonobo/sui-mcp-server

3 years

Works with Finder

0

Github Watches

0

Github Forks

0

Github Stars

MCP Server with FAISS for RAG

This project provides a proof-of-concept implementation of a Machine Conversation Protocol (MCP) server that allows an AI agent to query a vector database and retrieve relevant documents for Retrieval-Augmented Generation (RAG).

Features

  • FastAPI server with MCP endpoints
  • FAISS vector database integration
  • Document chunking and embedding
  • GitHub Move file extraction and processing
  • LLM integration for complete RAG workflow
  • Simple client example
  • Sample documents

Installation

Using pipx (Recommended)

pipx is a tool to help you install and run Python applications in isolated environments.

  1. First, install pipx if you don't have it:
# On macOS
brew install pipx
pipx ensurepath

# On Ubuntu/Debian
sudo apt update
sudo apt install python3-pip python3-venv
python3 -m pip install --user pipx
python3 -m pipx ensurepath

# On Windows with pip
pip install pipx
pipx ensurepath
  1. Install the MCP Server package directly from the project directory:
# Navigate to the directory containing the mcp_server folder
cd /path/to/mcp-server-project

# Install in editable mode
pipx install -e .
  1. (Optional) Configure environment variables:
    • Copy .env.example to .env
    • Add your GitHub token for higher rate limits: GITHUB_TOKEN=your_token_here
    • Add your OpenAI or other LLM API key for RAG integration: OPENAI_API_KEY=your_key_here

Manual Installation

If you prefer not to use pipx:

  1. Clone the repository
  2. Install dependencies:
cd mcp_server
pip install -r requirements.txt

Usage with pipx

After installing with pipx, you'll have access to the following commands:

Downloading Move Files from GitHub

# Download Move files with default settings
mcp-download --query "use sui" --output-dir docs/move_files

# Download with more options
mcp-download --query "module sui::coin" --max-results 50 --new-index --verbose

Improved GitHub Search and Indexing (Recommended)

# Search GitHub and index files with default settings
mcp-search-index --keywords "sui move"

# Search multiple keywords and customize options
mcp-search-index --keywords "sui move,move framework" --max-repos 30 --output-results --verbose

# Save search results and use a custom index location
mcp-search-index --keywords "sui coin,sui::transfer" --index-file custom/path/index.bin --output-results

The mcp-search-index command provides enhanced GitHub repository search capabilities:

  • Searches repositories first, then recursively extracts Move files
  • Supports multiple search keywords (comma-separated)
  • Intelligently filters for Move files containing "use sui" references
  • Always rebuilds the vector database after downloading

Indexing Move Files

# Index files in the default location
mcp-index

# Index with custom options
mcp-index --docs-dir path/to/files --index-file path/to/index.bin --verbose

Querying the Vector Database

# Basic query
mcp-query "What is a module in Sui Move?"

# Advanced query with options
mcp-query "How do I define a struct in Sui Move?" -k 3 -f

Using RAG with LLM Integration

# Basic RAG query (will use simulated LLM if no API key is provided)
mcp-rag "What is a module in Sui Move?"

# Using with a specific LLM API
mcp-rag "How do I define a struct in Sui Move?" --api-key your_api_key --top-k 3

# Output as JSON for further processing
mcp-rag "What are the benefits of sui::coin?" --output-json > rag_response.json

Running the Server

# Start the server with default settings
mcp-server

# Start with custom settings
mcp-server --host 127.0.0.1 --port 8080 --index-file custom/path/index.bin

Manual Usage (without pipx)

Starting the server

cd mcp_server
python main.py

The server will start on http://localhost:8000

Downloading Move Files from GitHub

To download Move files from GitHub and populate your vector database:

# Download Move files with default query "use sui"
./run.sh --download-move

# Customize the search query
./run.sh --download-move --github-query "module sui::coin" --max-results 50

# Download, index, and start the server
./run.sh --download-move --index

You can also use the Python script directly:

python download_move_files.py --query "use sui" --output-dir docs/move_files

Indexing documents

Before querying, you need to index your documents. You can place your text files (.txt), Markdown files (.md), or Move files (.move) in the docs directory.

To index the documents, you can either:

  1. Use the run script with the --index flag:
./run.sh --index
  1. Use the index script directly:
python index_move_files.py --docs-dir docs/move_files --index-file data/faiss_index.bin

Querying documents

You can use the local query script:

python local_query.py "What is RAG?"

# With more options
python local_query.py -k 3 -f "How to define a struct in Sui Move?"

Using RAG with LLM Integration

# Direct RAG query with an LLM
python rag_integration.py "What is a module in Sui Move?" --index-file data/faiss_index.bin

# With API key (if you have one)
OPENAI_API_KEY=your_key_here python rag_integration.py "How do coins work in Sui?"

MCP API Endpoint

The MCP API endpoint is available at /mcp/action. You can use it to perform different actions:

  • retrieve_documents: Retrieve relevant documents for a query
  • index_documents: Index documents from a directory

Example:

curl -X POST "http://localhost:8000/mcp/action" -H "Content-Type: application/json" -d '{"action_type": "retrieve_documents", "payload": {"query": "What is RAG?", "top_k": 3}}'

Complete RAG Pipeline

The full RAG (Retrieval-Augmented Generation) pipeline works as follows:

  1. Search Query: The user submits a question
  2. Retrieval: The system searches the vector database for relevant documents
  3. Context Formation: Retrieved documents are formatted into a prompt
  4. LLM Generation: The prompt is sent to an LLM with the retrieved context
  5. Enhanced Response: The LLM provides an answer based on the retrieved information

This workflow is fully implemented in the rag_integration.py module, which can be used either through the command line or as a library in your own applications.

GitHub Move File Extraction

The system can extract Move files from GitHub based on search queries. It implements two methods:

  1. GitHub API (preferred): Requires a GitHub token for higher rate limits
  2. Web Scraping fallback: Used when API method fails or when no token is provided

To configure your GitHub token, set it in the .env file or as an environment variable:

GITHUB_TOKEN=your_github_token_here

Project Structure

mcp_server/
├── __init__.py             # Package initialization
├── main.py                # Main server file
├── mcp_api.py             # MCP API implementation
├── index_move_files.py    # File indexing utility
├── local_query.py         # Local query utility
├── download_move_files.py # GitHub Move file extractor
├── rag_integration.py     # LLM integration for RAG
├── pyproject.toml         # Package configuration
├── requirements.txt       # Dependencies
├── .env.example           # Example environment variables
├── README.md              # This file
├── data/                  # Storage for the FAISS index
├── docs/                  # Sample documents
│   └── move_files/        # Downloaded Move files
├── models/                # Model implementations
│   └── vector_store.py    # FAISS vector store implementation
└── utils/
    ├── document_processor.py  # Document processing utilities
    └── github_extractor.py    # GitHub file extraction utilities

Extending the Project

To extend this proof-of-concept:

  1. Add authentication and security features
  2. Implement more sophisticated document processing
  3. Add support for more document types
  4. Integrate with other LLM providers
  5. Add monitoring and logging
  6. Improve the Move language parsing for more structured data extraction

License

MIT

相关推荐

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • 林乔安妮
  • A fashion stylist GPT offering outfit suggestions for various scenarios.

  • 1Panel-dev
  • 💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • Dhravya
  • Collection of apple-native tools for the model context protocol.

  • GLips
  • MCP server to provide Figma layout information to AI coding agents like Cursor

  • open-webui
  • User-friendly AI Interface (Supports Ollama, OpenAI API, ...)

    Reviews

    4 (1)
    Avatar
    user_OLcytgot
    2025-04-17

    I recently started using ProbonoBonobo_sui-mcp-server from MCP-Mirror and I'm genuinely impressed. The integration process was smooth and the server performance is outstanding. The community support is very active and helpful. Highly recommended for anyone needing a reliable and efficient server solution. Check it out at https://github.com/MCP-Mirror/ProbonoBonobo_sui-mcp-server!