Cover image
Try Now
2025-03-09

Mirror ofhttps://github.com/OtotaO/unsloth-mcp-server

3 years

Works with Finder

0

Github Watches

0

Github Forks

0

Github Stars

Unsloth MCP Server

An MCP server for Unsloth - a library that makes LLM fine-tuning 2x faster with 80% less memory.

What is Unsloth?

Unsloth is a library that dramatically improves the efficiency of fine-tuning large language models:

  • Speed: 2x faster fine-tuning compared to standard methods
  • Memory: 80% less VRAM usage, allowing fine-tuning of larger models on consumer GPUs
  • Context Length: Up to 13x longer context lengths (e.g., 89K tokens for Llama 3.3 on 80GB GPUs)
  • Accuracy: No loss in model quality or performance

Unsloth achieves these improvements through custom CUDA kernels written in OpenAI's Triton language, optimized backpropagation, and dynamic 4-bit quantization.

Features

  • Optimize fine-tuning for Llama, Mistral, Phi, Gemma, and other models
  • 4-bit quantization for efficient training
  • Extended context length support
  • Simple API for model loading, fine-tuning, and inference
  • Export to various formats (GGUF, Hugging Face, etc.)

Quick Start

  1. Install Unsloth: pip install unsloth
  2. Install and build the server:
    cd unsloth-server
    npm install
    npm run build
    
  3. Add to MCP settings:
    {
      "mcpServers": {
        "unsloth-server": {
          "command": "node",
          "args": ["/path/to/unsloth-server/build/index.js"],
          "env": {
            "HUGGINGFACE_TOKEN": "your_token_here" // Optional
          },
          "disabled": false,
          "autoApprove": []
        }
      }
    }
    

Available Tools

check_installation

Verify if Unsloth is properly installed on your system.

Parameters: None

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "check_installation",
  arguments: {}
});

list_supported_models

Get a list of all models supported by Unsloth, including Llama, Mistral, Phi, and Gemma variants.

Parameters: None

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "list_supported_models",
  arguments: {}
});

load_model

Load a pretrained model with Unsloth optimizations for faster inference and fine-tuning.

Parameters:

  • model_name (required): Name of the model to load (e.g., "unsloth/Llama-3.2-1B")
  • max_seq_length (optional): Maximum sequence length for the model (default: 2048)
  • load_in_4bit (optional): Whether to load the model in 4-bit quantization (default: true)
  • use_gradient_checkpointing (optional): Whether to use gradient checkpointing to save memory (default: true)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "load_model",
  arguments: {
    model_name: "unsloth/Llama-3.2-1B",
    max_seq_length: 4096,
    load_in_4bit: true
  }
});

finetune_model

Fine-tune a model with Unsloth optimizations using LoRA/QLoRA techniques.

Parameters:

  • model_name (required): Name of the model to fine-tune
  • dataset_name (required): Name of the dataset to use for fine-tuning
  • output_dir (required): Directory to save the fine-tuned model
  • max_seq_length (optional): Maximum sequence length for training (default: 2048)
  • lora_rank (optional): Rank for LoRA fine-tuning (default: 16)
  • lora_alpha (optional): Alpha for LoRA fine-tuning (default: 16)
  • batch_size (optional): Batch size for training (default: 2)
  • gradient_accumulation_steps (optional): Number of gradient accumulation steps (default: 4)
  • learning_rate (optional): Learning rate for training (default: 2e-4)
  • max_steps (optional): Maximum number of training steps (default: 100)
  • dataset_text_field (optional): Field in the dataset containing the text (default: 'text')
  • load_in_4bit (optional): Whether to use 4-bit quantization (default: true)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "finetune_model",
  arguments: {
    model_name: "unsloth/Llama-3.2-1B",
    dataset_name: "tatsu-lab/alpaca",
    output_dir: "./fine-tuned-model",
    max_steps: 100,
    batch_size: 2,
    learning_rate: 2e-4
  }
});

generate_text

Generate text using a fine-tuned Unsloth model.

Parameters:

  • model_path (required): Path to the fine-tuned model
  • prompt (required): Prompt for text generation
  • max_new_tokens (optional): Maximum number of tokens to generate (default: 256)
  • temperature (optional): Temperature for text generation (default: 0.7)
  • top_p (optional): Top-p for text generation (default: 0.9)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "generate_text",
  arguments: {
    model_path: "./fine-tuned-model",
    prompt: "Write a short story about a robot learning to paint:",
    max_new_tokens: 512,
    temperature: 0.8
  }
});

export_model

Export a fine-tuned Unsloth model to various formats for deployment.

Parameters:

  • model_path (required): Path to the fine-tuned model
  • export_format (required): Format to export to (gguf, ollama, vllm, huggingface)
  • output_path (required): Path to save the exported model
  • quantization_bits (optional): Bits for quantization (for GGUF export) (default: 4)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "export_model",
  arguments: {
    model_path: "./fine-tuned-model",
    export_format: "gguf",
    output_path: "./exported-model.gguf",
    quantization_bits: 4
  }
});

Advanced Usage

Custom Datasets

You can use custom datasets by formatting them properly and hosting them on Hugging Face or providing a local path:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "finetune_model",
  arguments: {
    model_name: "unsloth/Llama-3.2-1B",
    dataset_name: "json",
    data_files: {"train": "path/to/your/data.json"},
    output_dir: "./fine-tuned-model"
  }
});

Memory Optimization

For large models on limited hardware:

  • Reduce batch size and increase gradient accumulation steps
  • Use 4-bit quantization
  • Enable gradient checkpointing
  • Reduce sequence length if possible

Troubleshooting

Common Issues

  1. CUDA Out of Memory: Reduce batch size, use 4-bit quantization, or try a smaller model
  2. Import Errors: Ensure you have the correct versions of torch, transformers, and unsloth installed
  3. Model Not Found: Check that you're using a supported model name or have access to private models

Version Compatibility

  • Python: 3.10, 3.11, or 3.12 (not 3.13)
  • CUDA: 11.8 or 12.1+ recommended
  • PyTorch: 2.0+ recommended

Performance Benchmarks

Model VRAM Unsloth Speed VRAM Reduction Context Length
Llama 3.3 (70B) 80GB 2x faster >75% 13x longer
Llama 3.1 (8B) 80GB 2x faster >70% 12x longer
Mistral v0.3 (7B) 80GB 2.2x faster 75% less -

Requirements

  • Python 3.10-3.12
  • NVIDIA GPU with CUDA support (recommended)
  • Node.js and npm

License

Apache-2.0

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • zhaoyunxing92
  • 本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

  • justmywyw
  • Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.

    Reviews

    4 (1)
    Avatar
    user_jN9uwrRY
    2025-04-16

    SuperGateway by coding-alt is a fantastic tool for seamless server integration. Its user-friendly interface and robust functionality make it an essential for any developer aiming to optimize their workflow. Highly recommended for those seeking reliable performance and ease of use in their projects. Check out more details [here](https://mcp.so/server/supergateway/coding-alt).