I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

oculairmedia_Letta-MCP-server
Mirror ofhttps://github.com/oculairmedia/Letta-MCP-server
3 years
Works with Finder
0
Github Watches
0
Github Forks
0
Github Stars
Letta MCP Server
An MCP (Model Context Protocol) server implementation for interacting with the Letta API. This server provides tools for managing agents, memory blocks, and tools in the Letta system.
Features
- Create and manage Letta agents
- List and filter available agents
- Create, read, update, and manage memory blocks
- List memory blocks with filtering and pagination
- Attach memory blocks to agents with custom labels
- List and manage agent tools
- Send messages to agents and receive responses
Installation
# Clone the repository
git clone https://github.com/oculairmedia/Letta-MCP-server.git
cd letta-server
# Install dependencies
npm install
Configuration
- Create a
.env
file in the root directory with the following variables:
LETTA_BASE_URL=your_letta_api_url
LETTA_PASSWORD=your_letta_api_password
You can use the provided .env.example
as a template.
Available Scripts
-
npm run build
: Build the TypeScript code -
npm run start
: Build and start the server -
npm run dev
: Start the server in development mode with watch mode enabled
Tools
Agent Configuration
Agents can be configured with various options:
- Model selection (e.g., 'gpt-4', default: 'openai/gpt-4')
- Embedding model (default: 'openai/text-embedding-ada-002')
- Context window size (default: 16000)
- Temperature and token settings
- Custom function configurations
Memory Block Types
Memory blocks serve different purposes based on their labels:
-
persona
: Define agent personality and behavior -
human
: Store conversation history and user preferences -
system
: Store system-level instructions and configurations -
custom
: User-defined memory blocks for specific use cases
Agent Management
-
create_agent
: Create a new Letta agent with specified configuration -
list_agents
: List all available agents in the Letta system -
prompt_agent
: Send a message to an agent and get a response
Memory Block Management
-
create_memory_block
: Create a new memory block with name, label, and content -
read_memory_block
: Get full details of a specific memory block -
update_memory_block
: Update contents and metadata of a memory block -
list_memory_blocks
: List memory blocks with filtering options:- Filter by name, label, or content
- Filter by agent
- Filter templates only
- Pagination support
- Include full content or previews
-
attach_memory_block
: Attach a memory block to an agent with custom labels
Tool Management
-
list_tools
: List all available tools with filtering and pagination -
list_agent_tools
: List tools available for a specific agent -
attach_tool
: Attach a tool to an agent -
upload_tool
: Upload a new Python tool with:- Custom name and description
- Source code implementation
- Category/tag support
- Optional automatic agent attachment
API Version
This server interacts with version 1 of the Letta API (endpoint: /v1
). The API version is automatically handled by the server based on the configured LETTA_BASE_URL
.
Example Usage
When integrated with Cline, you can use the MCP tools as follows:
Memory Block Operations
// Create a memory block
<use_mcp_tool>
<server_name>letta</server_name>
<tool_name>create_memory_block</tool_name>
<arguments>
{
"name": "example_block",
"label": "custom",
"value": "This is an example memory block.",
"metadata": {
"version": "1.0",
"type": "documentation"
}
}
</arguments>
</use_mcp_tool>
// List memory blocks with filtering
<use_mcp_tool>
<server_name>letta</server_name>
<tool_name>list_memory_blocks</tool_name>
<arguments>
{
"label": "custom",
"page": 1,
"pageSize": 10,
"include_full_content": true
}
</arguments>
</use_mcp_tool>
// Update a memory block
<use_mcp_tool>
<server_name>letta</server_name>
<tool_name>update_memory_block</tool_name>
<arguments>
{
"block_id": "block-123",
"value": "Updated content",
"metadata": {
"version": "1.1"
}
}
</arguments>
</use_mcp_tool>
// Attach block to agent with label
<use_mcp_tool>
<server_name>letta</server_name>
<tool_name>attach_memory_block</tool_name>
<arguments>
{
"block_id": "block-123",
"agent_id": "agent-456",
"label": "persona"
}
</arguments>
</use_mcp_tool>
Tool Management
// Upload a new tool
<use_mcp_tool>
<server_name>letta</server_name>
<tool_name>upload_tool</tool_name>
<arguments>
{
"name": "weather_tool",
"description": "Get weather information for a location",
"source_code": "def get_weather(location):\n # Tool implementation\n return {'temp': 72, 'condition': 'sunny'}",
"category": "utilities",
"agent_id": "agent-456" // Optional: automatically attach to agent
}
</arguments>
</use_mcp_tool>
// List tools with filtering
<use_mcp_tool>
<server_name>letta</server_name>
<tool_name>list_tools</tool_name>
<arguments>
{
"filter": "weather",
"page": 1,
"pageSize": 10
}
</arguments>
</use_mcp_tool>
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Response Format
All MCP tools return responses in a consistent format:
{
"success": boolean,
"message": string, // Success/error message
"error"?: string, // Present only on error
"details"?: any, // Additional error details if available
// Tool-specific data...
}
Error Handling
The server handles various error scenarios:
- Invalid arguments or missing required parameters
- API authentication failures
- Resource not found errors
- Rate limiting and quota errors
- Network connectivity issues
Each error response includes detailed information to help troubleshoot issues.
Performance Considerations
- Memory blocks support pagination to handle large datasets efficiently
- Tool source code is validated before upload
- Streaming support for agent responses to handle long conversations
- Automatic cleanup of old/unused resources
- Request rate limiting to prevent API overload
License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.
Mirror ofhttps://github.com/suhail-ak-s/mcp-typesense-server
本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。
Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.
Reviews

user_vJhtpvHx
I've been using oculairmedia_Letta-MCP-server by MCP-Mirror for a while now, and it has exceeded my expectations. The seamless integration and user-friendly interface make it an essential tool for any media management tasks. Highly recommend it for anyone looking for a reliable MCP server solution! Check it out [here](https://github.com/MCP-Mirror/oculairmedia_Letta-MCP-server).