I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

together-mcp-server
MCP server enabling high-quality image generation via Together AI's Flux.1 Schnell model.
3 years
Works with Finder
1
Github Watches
2
Github Forks
8
Github Stars
Image Generation MCP Server
A Model Context Protocol (MCP) server that enables seamless generation of high-quality images using the Flux.1 Schnell model via Together AI. This server provides a standardized interface to specify image generation parameters.
Features
- High-quality image generation powered by the Flux.1 Schnell model
- Support for customizable dimensions (width and height)
- Clear error handling for prompt validation and API issues
- Easy integration with MCP-compatible clients
- Optional image saving to disk in PNG format
Installation
npm install together-mcp
Or run directly:
npx together-mcp@latest
Configuration
Add to your MCP server configuration:
{
"mcpServers": {
"together-image-gen": {
"command": "npx",
"args": ["together-mcp@latest -y"],
"env": {
"TOGETHER_API_KEY": "<API KEY>"
}
}
}
}
Usage
The server provides one tool: generate_image
Using generate_image
This tool has only one required parameter - the prompt. All other parameters are optional and use sensible defaults if not provided.
Parameters
{
// Required
prompt: string; // Text description of the image to generate
// Optional with defaults
model?: string; // Default: "black-forest-labs/FLUX.1-schnell-Free"
width?: number; // Default: 1024 (min: 128, max: 2048)
height?: number; // Default: 768 (min: 128, max: 2048)
steps?: number; // Default: 1 (min: 1, max: 100)
n?: number; // Default: 1 (max: 4)
response_format?: string; // Default: "b64_json" (options: ["b64_json", "url"])
image_path?: string; // Optional: Path to save the generated image as PNG
}
Minimal Request Example
Only the prompt is required:
{
"name": "generate_image",
"arguments": {
"prompt": "A serene mountain landscape at sunset"
}
}
Full Request Example with Image Saving
Override any defaults and specify a path to save the image:
{
"name": "generate_image",
"arguments": {
"prompt": "A serene mountain landscape at sunset",
"width": 1024,
"height": 768,
"steps": 20,
"n": 1,
"response_format": "b64_json",
"model": "black-forest-labs/FLUX.1-schnell-Free",
"image_path": "/path/to/save/image.png"
}
}
Response Format
The response will be a JSON object containing:
{
"id": string, // Generation ID
"model": string, // Model used
"object": "list",
"data": [
{
"timings": {
"inference": number // Time taken for inference
},
"index": number, // Image index
"b64_json": string // Base64 encoded image data (if response_format is "b64_json")
// OR
"url": string // URL to generated image (if response_format is "url")
}
]
}
If image_path was provided and the save was successful, the response will include confirmation of the save location.
Default Values
If not specified in the request, these defaults are used:
- model: "black-forest-labs/FLUX.1-schnell-Free"
- width: 1024
- height: 768
- steps: 1
- n: 1
- response_format: "b64_json"
Important Notes
- Only the
prompt
parameter is required - All optional parameters use defaults if not provided
- When provided, parameters must meet their constraints (e.g., width/height ranges)
- Base64 responses can be large - use URL format for larger images
- When saving images, ensure the specified directory exists and is writable
Prerequisites
- Node.js >= 16
- Together AI API key
- Sign in at api.together.xyz
- Navigate to API Keys settings
- Click "Create" to generate a new API key
- Copy the generated key for use in your MCP configuration
Dependencies
{
"@modelcontextprotocol/sdk": "0.6.0",
"axios": "^1.6.7"
}
Development
Clone and build the project:
git clone https://github.com/manascb1344/together-mcp-server
cd together-mcp-server
npm install
npm run build
Available Scripts
-
npm run build
- Build the TypeScript project -
npm run watch
- Watch for changes and rebuild -
npm run inspector
- Run MCP inspector
Contributing
Contributions are welcome! Please follow these steps:
- Fork the repository
- Create a new branch (
feature/my-new-feature
) - Commit your changes
- Push the branch to your fork
- Open a Pull Request
Feature requests and bug reports can be submitted via GitHub Issues. Please check existing issues before creating a new one.
For significant changes, please open an issue first to discuss your proposed changes.
License
This project is licensed under the MIT License. See the LICENSE file for details.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven
Confidential guide on numerology and astrology, based of GG33 Public information
A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.
Mirror ofhttps://github.com/suhail-ak-s/mcp-typesense-server
本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.
Reviews

user_WgXuTGEC
MODEL CONTEXT PROTOCOL by arkapatra31 is a phenomenal tool for server-side application management. Its seamless integration capability and robust performance make it a must-have for developers. The documentation on the website is incredibly thorough, ensuring quick implementation and minimal hassle. Highly recommend checking it out here: https://mcp.so/server/model-context-protocol/arkapatra31.