Cover image
Try Now
2025-04-06

LLM + MCP + RAG = Magic

3 years

Works with Finder

1

Github Watches

7

Github Forks

71

Github Stars

LLM + MCP + RAG

目标

  • Augmented LLM (Chat + MCP + RAG)
  • 不依赖框架
    • LangChain, LlamaIndex, CrewAI, AutoGen
  • MCP
    • 支持配置多个MCP Serves
  • RAG 极度简化板
    • 从知识中检索出有关信息,注入到上下文
  • 任务
    • 阅读网页 → 整理一份总结 → 保存到文件
    • 本地文档 → 查询相关资料 → 注入上下文

The augmented LLM

image.png

classDiagram
    class Agent {
        +init()
        +close()
        +invoke(prompt: string)
        -mcpClients: MCPClient[]
        -llm: ChatOpenAI
        -model: string
        -systemPrompt: string
        -context: string
    }
    class ChatOpenAI {
        +chat(prompt?: string)
        +appendToolResult(toolCallId: string, toolOutput: string)
        -llm: OpenAI
        -model: string
        -messages: OpenAI.Chat.ChatCompletionMessageParam[]
        -tools: Tool[]
    }
    class EmbeddingRetriever {
        +embedDocument(document: string)
        +embedQuery(query: string)
        +retrieve(query: string, topK: number)
        -embeddingModel: string
        -vectorStore: VectorStore
    }
    class MCPClient {
        +init()
        +close()
        +getTools()
        +callTool(name: string, params: Record<string, any>)
        -mcp: Client
        -command: string
        -args: string[]
        -transport: StdioClientTransport
        -tools: Tool[]
    }
    class VectorStore {
        +addEmbedding(embedding: number[], document: string)
        +search(queryEmbedding: number[], topK: number)
        -vectorStore: VectorStoreItem[]
    }
    class VectorStoreItem {
        -embedding: number[]
        -document: string
    }

    Agent --> MCPClient : uses
    Agent --> ChatOpenAI : interacts with
    ChatOpenAI --> ToolCall : manages
    EmbeddingRetriever --> VectorStore : uses
    VectorStore --> VectorStoreItem : contains

依赖

git clone git@github.com:KelvinQiu802/ts-node-esm-template.git
pnpm install
pnpm add dotenv openai @modelcontextprotocol/sdk chalk**

LLM

MCP

RAG

向量

  • 维度
  • 模长
  • 点乘 Dot Product
    • 对应位置元素的积,求和
  • 余弦相似度 cos
    • 1 → 方向完全一致
    • 0 → 垂直
    • -1 → 完全想法

image.png

image.png

image.png

image.png

相关推荐

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://reddgr.com
  • Delivers concise Python code and interprets non-English comments

  • 林乔安妮
  • A fashion stylist GPT offering outfit suggestions for various scenarios.

  • 1Panel-dev
  • 💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • GLips
  • MCP server to provide Figma layout information to AI coding agents like Cursor

  • Dhravya
  • Collection of apple-native tools for the model context protocol.

  • open-webui
  • User-friendly AI Interface (Supports Ollama, OpenAI API, ...)

  • Mintplex-Labs
  • The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.

    Reviews

    1 (1)
    Avatar
    user_YLaG8lCT
    2025-04-17

    As a dedicated user of MCP applications, I've found the llm-mcp-rag by KelvinQiu802 to be remarkable. Its seamless integration and intuitive functionality have greatly enhanced my workflow. The comprehensive documentation and support from the developer are commendable. I highly recommend checking out this project on GitHub: https://github.com/KelvinQiu802/llm-mcp-rag.