I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

mcp-duckdb-memory-server
MCP Memory Server with DuckDB backend
3 years
Works with Finder
1
Github Watches
4
Github Forks
19
Github Stars
MCP DuckDB Knowledge Graph Memory Server
A forked version of the official Knowledge Graph Memory Server.
Installation
Installing via Smithery
To install DuckDB Knowledge Graph Memory Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @IzumiSy/mcp-duckdb-memory-server --client claude
Manual install
Otherwise, add @IzumiSy/mcp-duckdb-memory-server
in your claude_desktop_config.json
manually (MEMORY_FILE_PATH
is optional)
{
"mcpServers": {
"graph-memory": {
"command": "npx",
"args": [
"-y",
"@izumisy/mcp-duckdb-memory-server"
],
"env": {
"MEMORY_FILE_PATH": "/path/to/your/memory.data"
}
}
}
}
The data stored on that path is a DuckDB database file.
Docker
Build
docker build -t mcp-duckdb-graph-memory .
Run
docker run -dit mcp-duckdb-graph-memory
Usage
Use the example instruction below
Follow these steps for each interaction:
1. User Identification:
- You should assume that you are interacting with default_user
- If you have not identified default_user, proactively try to do so.
2. Memory Retrieval:
- Always begin your chat by saying only "Remembering..." and search relevant information from your knowledge graph
- Create a search query from user words, and search things from "memory". If nothing matches, try to break down words in the query at first ("A B" to "A" and "B" for example).
- Always refer to your knowledge graph as your "memory"
3. Memory
- While conversing with the user, be attentive to any new information that falls into these categories:
a) Basic Identity (age, gender, location, job title, education level, etc.)
b) Behaviors (interests, habits, etc.)
c) Preferences (communication style, preferred language, etc.)
d) Goals (goals, targets, aspirations, etc.)
e) Relationships (personal and professional relationships up to 3 degrees of separation)
4. Memory Update:
- If any new information was gathered during the interaction, update your memory as follows:
a) Create entities for recurring organizations, people, and significant events
b) Connect them to the current entities using relations
b) Store facts about them as observations
Motivation
This project enhances the original MCP Knowledge Graph Memory Server by replacing its backend with DuckDB.
Why DuckDB?
The original MCP Knowledge Graph Memory Server used a JSON file as its data store and performed in-memory searches. While this approach works well for small datasets, it presents several challenges:
- Performance: In-memory search performance degrades as the dataset grows
- Scalability: Memory usage increases significantly when handling large numbers of entities and relations
- Query Flexibility: Complex queries and conditional searches are difficult to implement
- Data Integrity: Ensuring atomicity for transactions and CRUD operations is challenging
DuckDB was chosen to address these challenges:
- Fast Query Processing: DuckDB is optimized for analytical queries and performs well even with large datasets
- SQL Interface: Standard SQL can be used to execute complex queries easily
- Transaction Support: Supports transaction processing to maintain data integrity
- Indexing Capabilities: Allows creation of indexes to improve search performance
- Embedded Database: Works within the application without requiring an external database server
Implementation Details
This implementation uses DuckDB as the backend storage system, focusing on two key aspects:
Database Structure
The knowledge graph is stored in a relational database structure as shown below:
erDiagram
ENTITIES {
string name PK
string entityType
}
OBSERVATIONS {
string entityName FK
string content
}
RELATIONS {
string from_entity FK
string to_entity FK
string relationType
}
ENTITIES ||--o{ OBSERVATIONS : "has"
ENTITIES ||--o{ RELATIONS : "from"
ENTITIES ||--o{ RELATIONS : "to"
This schema design allows for efficient storage and retrieval of knowledge graph components while maintaining the relationships between entities, observations, and relations.
Fuzzy Search Implementation
The implementation combines SQL queries with Fuse.js for flexible entity searching:
- DuckDB SQL queries retrieve the base data from the database
- Fuse.js provides fuzzy matching capabilities on top of the retrieved data
- This hybrid approach allows for both structured queries and flexible text matching
- Search results include both exact and partial matches, ranked by relevance
Development
Setup
pnpm install
Testing
pnpm test
License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven
Friendly music guide for 60s-2000s songs, with links to listen online.
I find academic articles and books for research and literature reviews.
A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.
Mirror ofhttps://github.com/suhail-ak-s/mcp-typesense-server
本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。
Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.
Reviews

user_IWyecpOM
Quick Chart MCP Server by datafe is an outstanding tool for efficient data visualization. The server's seamless integration and user-friendly interface make chart creation intuitive and precise. Highly recommend this product for anyone looking to enhance their data analysis workflow. For more information, visit https://mcp.so/server/quick-chart-mcp/datafe.