
mcp-toolbox-sdk-python
Python SDK for interacting with the MCP Toolbox for Databases.
3 years
Works with Finder
5
Github Watches
11
Github Forks
37
Github Stars
MCP Toolbox LangChain SDK
This SDK allows you to seamlessly integrate the functionalities of Toolbox into your LangChain LLM applications, enabling advanced orchestration and interaction with GenAI models.
Table of Contents
- Installation
- Quickstart
- Usage
- Loading Tools
- Use with LangChain
- Use with LangGraph
- Manual usage
- Authenticating Tools
- Binding Parameter Values
- Asynchronous Usage
Installation
pip install toolbox-langchain
Quickstart
Here's a minimal example to get you started using LangGraph:
from toolbox_langchain import ToolboxClient
from langchain_google_vertexai import ChatVertexAI
from langgraph.prebuilt import create_react_agent
toolbox = ToolboxClient("http://127.0.0.1:5000")
tools = toolbox.load_toolset()
model = ChatVertexAI(model="gemini-1.5-pro-002")
agent = create_react_agent(model, tools)
prompt = "How's the weather today?"
for s in agent.stream({"messages": [("user", prompt)]}, stream_mode="values"):
message = s["messages"][-1]
if isinstance(message, tuple):
print(message)
else:
message.pretty_print()
Usage
Import and initialize the toolbox client.
from toolbox_langchain import ToolboxClient
# Replace with your Toolbox service's URL
toolbox = ToolboxClient("http://127.0.0.1:5000")
Loading Tools
Load a toolset
A toolset is a collection of related tools. You can load all tools in a toolset or a specific one:
# Load all tools
tools = toolbox.load_toolset()
# Load a specific toolset
tools = toolbox.load_toolset("my-toolset")
Load a single tool
tool = toolbox.load_tool("my-tool")
Loading individual tools gives you finer-grained control over which tools are available to your LLM agent.
Use with LangChain
LangChain's agents can dynamically choose and execute tools based on the user input. Include tools loaded from the Toolbox SDK in the agent's toolkit:
from langchain_google_vertexai import ChatVertexAI
model = ChatVertexAI(model="gemini-1.5-pro-002")
# Initialize agent with tools
agent = model.bind_tools(tools)
# Run the agent
result = agent.invoke("Do something with the tools")
Use with LangGraph
Integrate the Toolbox SDK with LangGraph to use Toolbox service tools within a graph-based workflow. Follow the official guide with minimal changes.
Represent Tools as Nodes
Represent each tool as a LangGraph node, encapsulating the tool's execution within the node's functionality:
from toolbox_langchain import ToolboxClient
from langgraph.graph import StateGraph, MessagesState
from langgraph.prebuilt import ToolNode
# Define the function that calls the model
def call_model(state: MessagesState):
messages = state['messages']
response = model.invoke(messages)
return {"messages": [response]} # Return a list to add to existing messages
model = ChatVertexAI(model="gemini-1.5-pro-002")
builder = StateGraph(MessagesState)
tool_node = ToolNode(tools)
builder.add_node("agent", call_model)
builder.add_node("tools", tool_node)
Connect Tools with LLM
Connect tool nodes with LLM nodes. The LLM decides which tool to use based on input or context. Tool output can be fed back into the LLM:
from typing import Literal
from langgraph.graph import END, START
from langchain_core.messages import HumanMessage
# Define the function that determines whether to continue or not
def should_continue(state: MessagesState) -> Literal["tools", END]:
messages = state['messages']
last_message = messages[-1]
if last_message.tool_calls:
return "tools" # Route to "tools" node if LLM makes a tool call
return END # Otherwise, stop
builder.add_edge(START, "agent")
builder.add_conditional_edges("agent", should_continue)
builder.add_edge("tools", 'agent')
graph = builder.compile()
graph.invoke({"messages": [HumanMessage(content="Do something with the tools")]})
Manual usage
Execute a tool manually using the invoke
method:
result = tools[0].invoke({"name": "Alice", "age": 30})
This is useful for testing tools or when you need precise control over tool execution outside of an agent framework.
Authenticating Tools
[!WARNING] Always use HTTPS to connect your application with the Toolbox service, especially when using tools with authentication configured. Using HTTP exposes your application to serious security risks.
Some tools require user authentication to access sensitive data.
Supported Authentication Mechanisms
Toolbox currently supports authentication using the OIDC protocol with ID tokens (not access tokens) for Google OAuth 2.0.
Configure Tools
Refer to these instructions on configuring tools for authenticated parameters.
Configure SDK
You need a method to retrieve an ID token from your authentication service:
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
Add Authentication to a Tool
toolbox = ToolboxClient("http://127.0.0.1:5000")
tools = toolbox.load_toolset()
auth_tool = tools[0].add_auth_token("my_auth", get_auth_token) # Single token
multi_auth_tool = tools[0].add_auth_tokens({"my_auth", get_auth_token}) # Multiple tokens
# OR
auth_tools = [tool.add_auth_token("my_auth", get_auth_token) for tool in tools]
Add Authentication While Loading
auth_tool = toolbox.load_tool(auth_tokens={"my_auth": get_auth_token})
auth_tools = toolbox.load_toolset(auth_tokens={"my_auth": get_auth_token})
[!NOTE] Adding auth tokens during loading only affect the tools loaded within that call.
Complete Example
import asyncio
from toolbox_langchain import ToolboxClient
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
toolbox = ToolboxClient("http://127.0.0.1:5000")
tool = toolbox.load_tool("my-tool")
auth_tool = tool.add_auth_token("my_auth", get_auth_token)
result = auth_tool.invoke({"input": "some input"})
print(result)
Binding Parameter Values
Predetermine values for tool parameters using the SDK. These values won't be modified by the LLM. This is useful for:
- Protecting sensitive information: API keys, secrets, etc.
- Enforcing consistency: Ensuring specific values for certain parameters.
- Pre-filling known data: Providing defaults or context.
Binding Parameters to a Tool
toolbox = ToolboxClient("http://127.0.0.1:5000")
tools = toolbox.load_toolset()
bound_tool = tool[0].bind_param("param", "value") # Single param
multi_bound_tool = tools[0].bind_params({"param1": "value1", "param2": "value2"}) # Multiple params
# OR
bound_tools = [tool.bind_param("param", "value") for tool in tools]
Binding Parameters While Loading
bound_tool = toolbox.load_tool("my-tool", bound_params={"param": "value"})
bound_tools = toolbox.load_toolset(bound_params={"param": "value"})
[!NOTE] Bound values during loading only affect the tools loaded in that call.
Binding Dynamic Values
Use a function to bind dynamic values:
def get_dynamic_value():
# Logic to determine the value
return "dynamic_value"
dynamic_bound_tool = tool.bind_param("param", get_dynamic_value)
[!IMPORTANT] You don't need to modify tool configurations to bind parameter values.
Asynchronous Usage
For better performance through cooperative
multitasking, you can
use the asynchronous interfaces of the ToolboxClient
.
[!Note] Asynchronous interfaces like
aload_tool
andaload_toolset
require an asynchronous environment. For guidance on running asynchronous Python programs, see asyncio documentation.
import asyncio
from toolbox_langchain import ToolboxClient
async def main():
toolbox = ToolboxClient("http://127.0.0.1:5000")
tool = await client.aload_tool("my-tool")
tools = await client.aload_toolset()
response = await tool.ainvoke()
if __name__ == "__main__":
asyncio.run(main())
相关推荐
I find academic articles and books for research and literature reviews.
Converts Figma frames into front-end code for various mobile frameworks.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Advanced software engineer GPT that excels through nailing the basics.
💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.
MCP server to provide Figma layout information to AI coding agents like Cursor
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
AI Agents & MCPs & AI Workflow Automation • (280+ MCP servers for AI agents) • AI Automation / AI Agent with MCPs • AI Workflows & AI Agents • MCPs for AI Agents
Reviews

user_VFSevgLe
As a dedicated user of the mcp-toolbox-sdk-python, I must say it's an indispensable tool for Python developers. Created by googleapis, it offers seamless integration and robust functionality for managing MCP applications. The documentation is comprehensive, and the community support is fantastic. I highly recommend checking it out on GitHub at https://github.com/googleapis/mcp-toolbox-sdk-python.