Cover image
Try Now
2025-03-08

基于 FastAPI 和 MCP(模型上下文协议),实现 AI 模型与开发环境 之间的标准化上下文交互,提升 AI 应用的可扩展性和可维护性。

3 years

Works with Finder

1

Github Watches

1

Github Forks

5

Github Stars

MCP Server

中文文档

Project Overview

Built on FastAPI and MCP (Model Context Protocol), this project enables standardized context interaction between AI models and development environments. It enhances the scalability and maintainability of AI applications by simplifying model deployment, providing efficient API endpoints, and ensuring consistency in model input and output, making it easier for developers to integrate and manage AI tasks.

MCP (Model Context Protocol) is a unified protocol for context interaction between AI models and development environments. This project provides a Python-based MCP server implementation that supports basic MCP protocol features, including initialization, sampling, and session management.

Features

  • JSON-RPC 2.0: Request-response communication based on standard JSON-RPC 2.0 protocol
  • SSE Connection: Support for Server-Sent Events connections for real-time notifications
  • Modular Design: Modular architecture for easy extension and customization
  • Asynchronous Processing: High-performance service using FastAPI and asynchronous IO
  • Complete Client: Includes a full test client implementation

Project Structure

mcp_server/
├── mcp_server.py         # MCP server main program
├── mcp_client.py         # MCP client test program
├── routers/
│   ├── __init__.py       # Router package initialization
│   └── base_router.py    # Base router implementation
├── requirements.txt      # Project dependencies
└── README.md             # Project documentation

Installation

  1. Clone the repository:
git clone https://github.com/freedanfan/mcp_server.git
cd mcp_server
  1. Install dependencies:
pip install -r requirements.txt

Usage

Starting the Server

python mcp_server.py

By default, the server will start on 127.0.0.1:12000. You can customize the host and port using environment variables:

export MCP_SERVER_HOST=0.0.0.0
export MCP_SERVER_PORT=8000
python mcp_server.py

Running the Client

Run the client in another terminal:

python mcp_client.py

If the server is not running at the default address, you can set an environment variable:

export MCP_SERVER_URL="http://your-server-address:port"
python mcp_client.py

API Endpoints

The server provides the following API endpoints:

  • Root Path (/): Provides server information
  • API Endpoint (/api): Handles JSON-RPC requests
  • SSE Endpoint (/sse): Handles SSE connections

MCP Protocol Implementation

Initialization Flow

  1. Client connects to the server via SSE
  2. Server returns the API endpoint URI
  3. Client sends an initialization request with protocol version and capabilities
  4. Server responds to the initialization request, returning server capabilities

Sampling Request

Clients can send sampling requests with prompts:

{
  "jsonrpc": "2.0",
  "id": "request-id",
  "method": "sample",
  "params": {
    "prompt": "Hello, please introduce yourself."
  }
}

The server will return sampling results:

{
  "jsonrpc": "2.0",
  "id": "request-id",
  "result": {
    "content": "This is a response to the prompt...",
    "usage": {
      "prompt_tokens": 10,
      "completion_tokens": 50,
      "total_tokens": 60
    }
  }
}

Closing a Session

Clients can send a shutdown request:

{
  "jsonrpc": "2.0",
  "id": "request-id",
  "method": "shutdown",
  "params": {}
}

The server will gracefully shut down:

{
  "jsonrpc": "2.0",
  "id": "request-id",
  "result": {
    "status": "shutting_down"
  }
}

Development Extensions

Adding New Methods

To add new MCP methods, add a handler function to the MCPServer class and register it in the _register_methods method:

def handle_new_method(self, params: dict) -> dict:
    """Handle new method"""
    logger.info(f"Received new method request: {params}")
    # Processing logic
    return {"result": "success"}

def _register_methods(self):
    # Register existing methods
    self.router.register_method("initialize", self.handle_initialize)
    self.router.register_method("sample", self.handle_sample)
    self.router.register_method("shutdown", self.handle_shutdown)
    # Register new method
    self.router.register_method("new_method", self.handle_new_method)

Integrating AI Models

To integrate actual AI models, modify the handle_sample method:

async def handle_sample(self, params: dict) -> dict:
    """Handle sampling request"""
    logger.info(f"Received sampling request: {params}")
    
    # Get prompt
    prompt = params.get("prompt", "")
    
    # Call AI model API
    # For example: using OpenAI API
    response = await openai.ChatCompletion.acreate(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}]
    )
    
    content = response.choices[0].message.content
    usage = response.usage
    
    return {
        "content": content,
        "usage": {
            "prompt_tokens": usage.prompt_tokens,
            "completion_tokens": usage.completion_tokens,
            "total_tokens": usage.total_tokens
        }
    }

Troubleshooting

Common Issues

  1. Connection Errors: Ensure the server is running and the client is using the correct server URL
  2. 405 Method Not Allowed: Ensure the client is sending requests to the correct API endpoint
  3. SSE Connection Failure: Check network connections and firewall settings

Logging

Both server and client provide detailed logging. View logs for more information:

# Increase log level
export PYTHONPATH=.
python -m logging -v DEBUG -m mcp_server

References

License

This project is licensed under the MIT License. See the LICENSE file for details.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://tovuti.be
  • Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven

  • Gil kaminski
  • Make sure you are post-ready before you post on social media

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

  • zhaoyunxing92
  • 本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。

  • apappascs
  • Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.

  • OffchainLabs
  • Go implementation of Ethereum proof of stake

    Reviews

    2 (1)
    Avatar
    user_R25CqY3H
    2025-04-15

    As a dedicated user of GitHub Enterprise MCP Server by ddukbg, I am thoroughly impressed with its seamless integration and robust features. The product significantly enhances our development workflows, making collaboration and version control more efficient. Its reliability and comprehensive toolset are indispensable for any serious development team. Highly recommended!