Cover image
Try Now
2025-04-06

MCP server for working with HCP Terraform

3 years

Works with Finder

1

Github Watches

0

Github Forks

0

Github Stars

mcp-server-hcp-terraform

MCP server for working with HashiCorp Terraform Cloud/Enterprise API

Overview

This project provides a MCP server that integrates with the HCP Terraform Cloud/Enterprise API. Through MCP, you can access features such as searching for Terraform modules and retrieving module information.

Prerequisites

  • Python 3.13+
  • HCP Terraform Cloud/Enterprise account
  • Access token

Environment Variables

Set the following environment variables before use:

  • HCP_TERRAFORM_TOKEN: HCP Terraform access token (required)
  • HCP_TERRAFORM_ORG: HCP Terraform organization name (required)
  • HCP_TERRAFORM_BASE_URL: HCP Terraform base URL (optional, default: https://app.terraform.io)

Features

This MCP server provides the following features:

Search Private Modules

Use the hcp_terraform_search_private_modules tool to search for modules in the HCP Terraform Private Registry.

Parameters:

  • query: Search query
  • provider (optional): Provider filter (e.g., aws, gcp, azure)
  • limit (optional): Maximum number of results (default: 10)

Get Module Details

Use the hcp_terraform_get_module tool to retrieve detailed information about a specific module from the HCP Terraform Registry.

Parameters:

  • module_name: Name of the module
  • provider: Provider (e.g., aws, gcp, azure)
  • registry_name (optional): Registry name (private or public, default: private)
  • namespace (optional): Module namespace (uses organization name if not specified)

Usage

{
  "globalShortcut": "",
  "mcpServers": {
    "HCP Terraform": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp[cli]",
        "mcp",
        "run",
        "path/to/mcp-server-hcp-terraform/server.py"
      ],
      "env": {
        "HCP_TERRAFORM_TOKEN": "paste_here",
        "HCP_TERRAFORM_ORG": "my_org"
      }
    }
  }
}

License

MIT License

相关推荐

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • 林乔安妮
  • A fashion stylist GPT offering outfit suggestions for various scenarios.

  • 田中 楓太
  • A virtual science instructor for engaging and informative lessons.

  • 1Panel-dev
  • 💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.

  • ShrimpingIt
  • Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx

  • open-webui
  • User-friendly AI Interface (Supports Ollama, OpenAI API, ...)

  • gergelyszerovay
  • A preconfigured development container setup for AI-assisted development with Claude, based on VS Code Dev Containers with integrated Model Context Protocol (MCP) server for file system and shell operations.

  • GLips
  • MCP server to provide Figma layout information to AI coding agents like Cursor

  • adafruit
  • Python code to use the MCP3008 analog to digital converter with a Raspberry Pi or BeagleBone black.

    Reviews

    4 (1)
    Avatar
    user_0Ur0BKiq
    2025-04-18

    I've been using the mcp-server-hcp-terraform for managing my cloud infrastructure, and it's been a game-changer. Kudos to dulltz for creating such a robust and efficient tool! The documentation on the GitHub page is comprehensive, making it easy to get started and implement. Highly recommended for anyone looking to streamline their Terraform workflows.