
just-prompt
just-prompt is an MCP server that provides a unified interface to top LLM providers (OpenAI, Anthropic, Google Gemini, Groq, DeepSeek, and Ollama)
3 years
Works with Finder
4
Github Watches
30
Github Forks
72
Github Stars
Just Prompt - A lightweight MCP server for LLM providers
just-prompt
is a Model Control Protocol (MCP) server that provides a unified interface to various Large Language Model (LLM) providers including OpenAI, Anthropic, Google Gemini, Groq, DeepSeek, and Ollama.
Tools
The following MCP tools are available in the server:
-
prompt
: Send a prompt to multiple LLM models- Parameters:
-
text
: The prompt text -
models_prefixed_by_provider
(optional): List of models with provider prefixes. If not provided, uses default models.
-
- Parameters:
-
prompt_from_file
: Send a prompt from a file to multiple LLM models- Parameters:
-
file
: Path to the file containing the prompt -
models_prefixed_by_provider
(optional): List of models with provider prefixes. If not provided, uses default models.
-
- Parameters:
-
prompt_from_file_to_file
: Send a prompt from a file to multiple LLM models and save responses as markdown files- Parameters:
-
file
: Path to the file containing the prompt -
models_prefixed_by_provider
(optional): List of models with provider prefixes. If not provided, uses default models. -
output_dir
(default: "."): Directory to save the response markdown files to
-
- Parameters:
-
list_providers
: List all available LLM providers- Parameters: None
-
list_models
: List all available models for a specific LLM provider- Parameters:
-
provider
: Provider to list models for (e.g., 'openai' or 'o')
-
- Parameters:
Provider Prefixes
every model must be prefixed with the provider name
use the short name for faster referencing
-
o
oropenai
: OpenAI-
o:gpt-4o-mini
-
openai:gpt-4o-mini
-
-
a
oranthropic
: Anthropic-
a:claude-3-5-haiku
-
anthropic:claude-3-5-haiku
-
-
g
orgemini
: Google Gemini-
g:gemini-2.5-pro-exp-03-25
-
gemini:gemini:gemini-2.5-pro-exp-03-25
-
-
q
orgroq
: Groq-
q:llama-3.1-70b-versatile
-
groq:llama-3.1-70b-versatile
-
-
d
ordeepseek
: DeepSeek-
d:deepseek-coder
-
deepseek:deepseek-coder
-
-
l
orollama
: Ollama-
l:llama3.1
-
ollama:llama3.1
-
Features
- Unified API for multiple LLM providers
- Support for text prompts from strings or files
- Run multiple models in parallel
- Automatic model name correction using the first model in the
--default-models
list - Ability to save responses to files
- Easy listing of available providers and models
Installation
# Clone the repository
git clone https://github.com/yourusername/just-prompt.git
cd just-prompt
# Install with pip
uv sync
Environment Variables
Create a .env
file with your API keys (you can copy the .env.sample
file):
cp .env.sample .env
Then edit the .env
file to add your API keys (or export them in your shell):
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
GEMINI_API_KEY=your_gemini_api_key_here
GROQ_API_KEY=your_groq_api_key_here
DEEPSEEK_API_KEY=your_deepseek_api_key_here
OLLAMA_HOST=http://localhost:11434
Claude Code Installation
Default model set to anthropic:claude-3-7-sonnet-20250219
.
If you use Claude Code right out of the repository you can see in the .mcp.json file we set the default models to...
{
"mcpServers": {
"just-prompt": {
"type": "stdio",
"command": "uv",
"args": [
"--directory",
".",
"run",
"just-prompt",
"--default-models",
"anthropic:claude-3-7-sonnet-20250219,openai:o3-mini,gemini:gemini-2.5-pro-exp-03-25"
],
"env": {}
}
}
}
The --default-models
parameter sets the models to use when none are explicitly provided to the API endpoints. The first model in the list is also used for model name correction when needed. This can be a list of models separated by commas.
When starting the server, it will automatically check which API keys are available in your environment and inform you which providers you can use. If a key is missing, the provider will be listed as unavailable, but the server will still start and can be used with the providers that are available.
Using mcp add-json
Copy this and paste it into claude code with BUT don't run until you copy the json
claude mcp add just-prompt "$(pbpaste)"
JSON to copy
{
"command": "uv",
"args": ["--directory", ".", "run", "just-prompt"]
}
With a custom default model set to openai:gpt-4o
.
{
"command": "uv",
"args": ["--directory", ".", "run", "just-prompt", "--default-models", "openai:gpt-4o"]
}
With multiple default models:
{
"command": "uv",
"args": ["--directory", ".", "run", "just-prompt", "--default-models", "anthropic:claude-3-7-sonnet-20250219,openai:gpt-4o,gemini:gemini-2.5-pro-exp-03-25"]
}
Using mcp add
with project scope
# With default model (anthropic:claude-3-7-sonnet-20250219)
claude mcp add just-prompt -s project \
-- \
uv --directory . \
run just-prompt
# With custom default model
claude mcp add just-prompt -s project \
-- \
uv --directory . \
run just-prompt --default-models "openai:gpt-4o"
# With multiple default models
claude mcp add just-prompt -s user \
-- \
uv --directory . \
run just-prompt --default-models "anthropic:claude-3-7-sonnet-20250219:4k,openai:o3-mini,gemini:gemini-2.0-flash,openai:gpt-4.5-preview,gemini:gemini-2.5-pro-exp-03-25"
mcp remove
claude mcp remove just-prompt
Running Tests
uv run pytest
Codebase Structure
.
├── ai_docs/ # Documentation for AI model details
│ ├── llm_providers_details.xml
│ └── pocket-pick-mcp-server-example.xml
├── list_models.py # Script to list available LLM models
├── pyproject.toml # Python project configuration
├── specs/ # Project specifications
│ └── init-just-prompt.md
├── src/ # Source code directory
│ └── just_prompt/
│ ├── __init__.py
│ ├── __main__.py
│ ├── atoms/ # Core components
│ │ ├── llm_providers/ # Individual provider implementations
│ │ │ ├── anthropic.py
│ │ │ ├── deepseek.py
│ │ │ ├── gemini.py
│ │ │ ├── groq.py
│ │ │ ├── ollama.py
│ │ │ └── openai.py
│ │ └── shared/ # Shared utilities and data types
│ │ ├── data_types.py
│ │ ├── model_router.py
│ │ ├── utils.py
│ │ └── validator.py
│ ├── molecules/ # Higher-level functionality
│ │ ├── list_models.py
│ │ ├── list_providers.py
│ │ ├── prompt.py
│ │ ├── prompt_from_file.py
│ │ └── prompt_from_file_to_file.py
│ ├── server.py # MCP server implementation
│ └── tests/ # Test directory
│ ├── atoms/ # Tests for atoms
│ │ ├── llm_providers/
│ │ └── shared/
│ └── molecules/ # Tests for molecules
Context Priming
READ README.md, then run git ls-files, and 'eza --git-ignore --tree' to understand the context of the project.
Thinking Tokens with Claude
The Anthropic Claude model claude-3-7-sonnet-20250219
supports extended thinking capabilities using thinking tokens. This allows Claude to do more thorough thought processes before answering.
You can enable thinking tokens by adding a suffix to the model name in this format:
-
anthropic:claude-3-7-sonnet-20250219:1k
- Use 1024 thinking tokens -
anthropic:claude-3-7-sonnet-20250219:4k
- Use 4096 thinking tokens -
anthropic:claude-3-7-sonnet-20250219:8000
- Use 8000 thinking tokens
Example usage:
# Using 4k thinking tokens with Claude
uv run just-prompt prompt "Analyze the advantages and disadvantages of quantum computing vs classical computing" \
--models-prefixed-by-provider anthropic:claude-3-7-sonnet-20250219:4k
Notes:
- Thinking tokens are only supported for the
claude-3-7-sonnet-20250219
model - Valid thinking token budgets range from 1024 to 16000
- Values outside this range will be automatically adjusted to be within range
- You can specify the budget with k notation (1k, 4k, etc.) or with exact numbers (1024, 4096, etc.)
Resources
相关推荐
I find academic articles and books for research and literature reviews.
Converts Figma frames into front-end code for various mobile frameworks.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
Delivers concise Python code and interprets non-English comments
💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
MCP server to provide Figma layout information to AI coding agents like Cursor
Reviews

user_waan3fN1
I recently completed "Python From 0 to 1: Building MCP Server & Client" by GobinFan, and it was an excellent resource. The course offers detailed, step-by-step instructions on creating servers and clients using MCP, making it perfect for both beginners and experienced developers. Highly recommend! Check it out here: https://mcp.so/server/python-mcp-server-client/GobinFan