Converts Figma frames into front-end code for various mobile frameworks.

pyATS_MCP
An MCP Server for pyATS (experimental)
3 years
Works with Finder
3
Github Watches
4
Github Forks
10
Github Stars
pyATS MCP Server
This project implements a Model Context Protocol (MCP) Server that wraps Cisco pyATS and Genie functionality. It enables structured, model-driven interaction with network devices over STDIO using the JSON-RPC 2.0 protocol.
🚨 This server does not use HTTP or SSE. All communication is done via STDIN/STDOUT (standard input/output), making it ideal for secure, embedded, containerized, or LangGraph-based tool integrations.
🔧 What It Does
Connects to Cisco IOS/NX-OS devices defined in a pyATS testbed
Supports safe execution of validated CLI commands (show, ping)
Allows controlled configuration changes
Returns structured (parsed) or raw output
Exposes a set of well-defined tools via tools/discover and tools/call
Operates entirely via STDIO for minimal surface area and maximum portability
🚀 Usage
- Set your testbed path
export PYATS_TESTBED_PATH=/absolute/path/to/testbed.yaml
- Run the server
Continuous STDIO Mode (default)
python3 pyats_mcp_server.py
Launches a long-running process that reads JSON-RPC requests from stdin and writes responses to stdout.
One-Shot Mode
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/discover"}' | python3 pyats_mcp_server.py --oneshot
Processes a single JSON-RPC request and exits.
📦 Docker Support
Build the container
docker build -t pyats-mcp-server .
Run the container (STDIO Mode)
docker run -i --rm \
-e PYATS_TESTBED_PATH=/app/testbed.yaml \
-v /your/testbed/folder:/app \
pyats-mcp-server
🧠 Available MCP Tools
Tool Description
run_show_command Executes show commands safely with optional parsing
run_ping_command Executes ping tests and returns parsed or raw results
apply_configuration Applies safe configuration commands (multi-line supported)
learn_config Fetches running config (show run brief)
learn_logging Fetches system logs (show logging last 250)
All inputs are validated using Pydantic schemas for safety and consistency.
🤖 LangGraph Integration
Add the MCP server as a tool node in your LangGraph pipeline like so:
("pyats-mcp", ["python3", "pyats_mcp_server.py", "--oneshot"], "tools/discover", "tools/call")
Name: pyats-mcp
Command: python3 pyats_mcp_server.py --oneshot
Discover Method: tools/discover
Call Method: tools/call
STDIO-based communication ensures tight integration with LangGraph’s tool invocation model without opening HTTP ports or exposing REST endpoints.
📜 Example Requests
Discover Tools
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/discover"
}
Run Show Command
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "run_show_command",
"arguments": {
"device_name": "router1",
"command": "show ip interface brief"
}
}
}
🔒 Security Features
Input validation using Pydantic
Blocks unsafe commands like erase, reload, write
Prevents pipe/redirect abuse (e.g., | include, >, copy, etc.)
Gracefully handles parsing fallbacks and errors
📁 Project Structure
.
├── pyats_mcp_server.py # MCP server with JSON-RPC and pyATS integration
├── Dockerfile # Docker container definition
├── testbed.yaml # pyATS testbed (user-provided)
└── README.md # This file
📥 MCP Server Config Example (pyATS MCP via Docker)
To run the pyATS MCP Server as a container with STDIO integration, configure your mcpServers like this:
{
"mcpServers": {
"pyats": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"PYATS_TESTBED_PATH",
"-v",
"/absolute/path/to/testbed/folder:/app",
"pyats-mcp-server"
],
"env": {
"PYATS_TESTBED_PATH": "/app/testbed.yaml"
}
}
}
}
🧾 Explanation: command: Uses Docker to launch the containerized pyATS MCP server
args:
-i: Keeps STDIN open for communication
--rm: Automatically removes the container after execution
-e: Injects the environment variable PYATS_TESTBED_PATH
-v: Mounts your local testbed directory into the container
pyats-mcp-server: Name of the Docker image
env:
Sets the path to the testbed file inside the container (/app/testbed.yaml)
✍️ Author
John Capobianco
Product Marketing Evangelist, Selector AI
Author, Automate Your Network
Let me know if you’d like to add:
A sample LangGraph graph config
Companion client script
CI/CD integration (e.g., GitHub Actions)
Happy to help!
The testbed.yaml file works with the Cisco DevNet Cisco Modeling Labs (CML) Sandbox!
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Advanced software engineer GPT that excels through nailing the basics.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
💬 MaxKB is an open-source AI assistant for enterprise. It seamlessly integrates RAG pipelines, supports robust workflows, and provides MCP tool-use capabilities.
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
MCP server to provide Figma layout information to AI coding agents like Cursor
Put an end to code hallucinations! GitMCP is a free, open-source, remote MCP server for any GitHub project
Reviews

user_akL1oLXn
As a dedicated user of pyATS_MCP, I can confidently say that this tool is a game-changer for network automation. Created by automateyournetwork, it integrates seamlessly with pyATS to provide robust, reliable network testing and automation capabilities. The user-friendly interface and comprehensive documentation available on the GitHub page make it easy to get started and leverage its full potential. Highly recommended for anyone looking to streamline their network operations!