Cover image
Try Now
2025-03-30

MCP server for Dart VM and Flutter

3 years

Works with Finder

3

Github Watches

4

Github Forks

23

Github Stars

Flutter Inspector MCP Server for AI-Powered Development

GitHub Repository smithery badge

🔍 A powerful Model Context Protocol (MCP) server that connects your Flutter apps with AI coding assistants like Cursor, Claude, and Cline.

Flutter Inspector Server MCP server

This project is a work in progress and not all methods (mostly Flutter Inspector related) are implemented yet.

However, two methods are tested with Flutter:

  • screenshot
  • get_root_widget

Currently Flutter works with MCP server via forwarding server. Please see Architecture for more details.

Some of other methods are not tested - they may work or not. Please use with caution. It is possible that the most methods will be removed from the MCP server later to focus solely on Flutter applications and maybe Jaspr.

!!WARNING!!

ALL DUMPS TOOLS ARE VERY HEAVY OPERATION and can easily overload context window of AI agent. Please use them with extreme caution.

🚀 Quick Start

Prerequisites

  • Node.js (v14 or later)
  • A Flutter app running in debug mode
  • One of: Cursor, Claude, or Cline AI assistant

Installing via Smithery

To install Flutter Inspector for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @Arenukvern/mcp_flutter --client claude

Installation from GitHub

For developers who want to contribute to the project or run the latest version directly from source, follow these steps:

  1. Clone the repository:

    git clone https://github.com/Arenukvern/mcp_flutter
    cd flutter-inspector
    
  2. Install and build dependencies:

    make install
    

    This command installs all necessary dependencies listed in package.json and then builds MCP server and forwarding server.

  3. Start forwarding server:

    make forward
    
  4. Add DevTools Flutter Extension to Flutter App:

    flutter pub add --dev devtools_mcp_extension
    
  5. Start your Flutter app in debug mode

    ! Current workaround for security reasons is to run with --disable-service-auth-codes. If you know how to fix this, please let me know!

    flutter run --debug --observatory-port=8181 --enable-vm-service --disable-service-auth-codes
    
  6. 🛠️ Add Flutter Inspector to your AI tool

    Note for Local Development (GitHub Install):

    If you installed the Flutter Inspector from GitHub and built it locally, you need to adjust the paths in the AI tool configurations to point to your local build/index.js file. Refer to the "Installation from GitHub" section for instructions on cloning and building the project.

    Cline Setup

    1. Add to your .cline/config.json:
      {
        "mcpServers": {
          "flutter-inspector": {
            "command": "node",
            "args": [
              "/path/to/your/cloned/flutter-inspector/mcp_server/build/index.js"
            ],
            "env": {
              "PORT": "3334",
              "LOG_LEVEL": "critical"
            },
            "disabled": false
          }
        }
      }
      
    2. Restart Cline
    3. The Flutter inspector will be automatically available in your conversations

    Cursor Setup

    1. Open Cursor's settings
    2. Go to the Features tab
    3. Under "Model Context Protocol", add the server:
      {
        "mcpServers": {
          "flutter-inspector": {
            "command": "node",
            "args": [
              "/path/to/your/cloned/flutter-inspector/mcp_server/build/index.js"
            ],
            "env": {},
            "disabled": false,
            "autoApprove": []
          }
        }
      }
      
    4. Restart Cursor
    5. Open Agent Panel (cmd + L on macOS)
    6. You're ready! Try commands like "analyze my Flutter app's widget tree"

    Claude Setup

    1. Add to your Claude configuration file:
      {
        "mcpServers": {
          "flutter-inspector": {
            "command": "node",
            "args": [
              "/path/to/your/cloned/flutter-inspector/mcp_server/build/index.js"
            ],
            "env": {
              "PORT": "3334",
              "LOG_LEVEL": "critical"
            },
            "disabled": false
          }
        }
      }
      
    2. Restart Claude
    3. The Flutter inspector tools will be automatically available

🎯 What You Can Do (Hopefully)

  • Analyze Widget Trees: Get detailed information about your Flutter app's structure
  • Inspect Navigation: See current routes and navigation state
  • Debug Layout Issues: Understand widget relationships and properties

🔧 Configuration Options

Environment Variables (.env)

# will be used for direct connections to the dart vm
DART_VM_PORT=8181
DART_VM_HOST=localhost

# will be used for this MCP server
MCP_SERVER_PORT=3535
MCP_SERVER_HOST=localhost

# will be used for the forwarding server
FORWARDING_SERVER_PORT=8143
FORWARDING_SERVER_HOST=localhost

# Logging configuration
LOG_LEVEL=critical

# Development configuration
NODE_ENV=development

Command Line Arguments

--port, -p     # Server port
--stdio        # Run in stdio mode (default: true)
--log-level    # Set logging level (debug, info, notice, warning, error, critical, alert, emergency) according to https://spec.modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging/#log-levels
--help         # Show help

Port Configuration

All Flutter Inspector tools automatically connect to the default Flutter debug port (8181). You only need to specify a port if:

  • You're running Flutter on a different port
  • You have multiple Flutter instances running
  • You've configured a custom debug port

Example usage:

// Default port (8181)
{
  "name": "debug_dump_render_tree"
}

// Custom port
{
  "name": "debug_dump_render_tree",
  "arguments": {
    "port": 8182
  }
}

🔧 Troubleshooting

  1. Connection Issues

    • Ensure your Flutter app is running in debug mode
    • Verify the port matches in both Flutter app and inspector
    • Check if the port is not being used by another process
  2. AI Tool Not Detecting Inspector

    • Restart the AI tool after configuration changes
    • Verify the configuration JSON syntax
    • Check the tool's logs for connection errors

📚 Available Tools

All tools default to using port 8181 if no port is specified. You can override this by providing a specific port number.

Utility Methods (Not Direct RPC Calls)

These are helper methods that provide additional functionality beyond direct Flutter RPC calls:

  • get_active_ports: Lists all Flutter/Dart processes listening on ports
  • get_supported_protocols: Retrieves supported protocols from a Flutter app
  • get_vm_info: Gets detailed VM information from a running Flutter app
  • get_extension_rpcs: Lists all available extension RPCs in the Flutter app

Debug Methods (ext.flutter.debug*)

Direct RPC methods for debugging Flutter applications:

  • debug_dump_render_tree: Dumps the render tree structure
  • debug_dump_layer_tree: Dumps the layer tree for rendering analysis
  • debug_dump_semantics_tree: Dumps the semantics tree for accessibility analysis
  • debug_paint_baselines_enabled: Toggles baseline paint debugging
  • debug_dump_focus_tree: Dumps the focus tree for input handling analysis

Inspector Methods (ext.flutter.inspector.*)

Direct RPC methods for inspecting Flutter widget trees and layout:

  • inspector_screenshot: Takes a screenshot of the Flutter app

DartIO Methods (ext.dart.io.*)

Direct RPC methods for Dart I/O operations:

  • dart_io_get_version: Gets Flutter version information

Method Categories

  1. Direct RPC Methods These methods map directly to Flutter's extension RPCs:

    • All methods prefixed with debug_, inspector_, or dart_io_
    • Each method corresponds to a specific Flutter RPC endpoint
    • Parameters and return values match Flutter's specifications
  2. Utility Methods These are helper methods that provide additional functionality:

    • Process discovery (get_active_ports)
    • Protocol inspection (get_supported_protocols)
    • VM interaction (get_vm_info)
    • RPC discovery (get_extension_rpcs)

Method Naming Convention

All methods follow a consistent naming pattern:

  • Utility methods: descriptive_name
  • Debug methods: debug_*
  • Inspector methods: inspector_*
  • DartIO methods: dartio*
  • Stream methods: stream_*

Each method name indicates its category and functionality, making it easier to understand its purpose and capabilities.

Method Documentation Format

Each method includes:

  • Clear description of functionality
  • Required and optional parameters
  • Return value format
  • Category indication (RPC vs Utility)
  • Corresponding Flutter RPC endpoint (if applicable)

For detailed implementation instructions, see the "Implementing New RPC Methods" section.

🔧 Implementing New RPC Methods

Step-by-Step Guide

  1. Add RPC Method Definition

    // In src/index.ts, add to appropriate group in FlutterRPC
    const FlutterRPC = {
      GroupName: {
        METHOD_NAME: createRPCMethod(RPCPrefix.GROUP, "methodName"),
        // ... other methods
      },
    };
    
  2. Add Tool Definition

    // In ListToolsRequestSchema handler
    {
      name: "method_name",
      description: "Clear description of what the method does",
      inputSchema: {
        type: "object",
        properties: {
          port: {
            type: "number",
            description: "Port number where the Flutter app is running (defaults to 8181)",
          },
          // Add other parameters if needed
          paramName: {
            type: "string", // or boolean, number, etc.
            description: "Parameter description",
          }
        },
        required: ["paramName"], // List required parameters
      }
    }
    
  3. Implement Handler

    // In CallToolRequestSchema handler
    case "method_name": {
      const port = handlePortParam();
      // Get and validate parameters if any
      const { paramName } = request.params.arguments as { paramName: string };
      if (!paramName) {
        throw new McpError(
          ErrorCode.InvalidParams,
          "paramName parameter is required"
        );
      }
      // Call the RPC method
      return wrapResponse(
        this.invokeFlutterExtension(port, FlutterRPC.GroupName.METHOD_NAME, {
          paramName,
        })
      );
    }
    

Implementation Checklist

  1. Method Definition

    • Add to appropriate group in FlutterRPC
    • Use correct RPCPrefix
    • Follow naming convention
  2. Tool Definition

    • Add clear description
    • Define all parameters
    • Mark required parameters
    • Add port parameter
    • Document parameter types
  3. Handler Implementation

    • Add case in switch statement
    • Handle port parameter
    • Validate all parameters
    • Add error handling
    • Use proper types
    • Return wrapped response
  4. Testing

    • Verify method works in debug mode
    • Test with different parameter values
    • Test error cases
    • Test with default port

Example Implementation

// 1. Add RPC Method
const FlutterRPC = {
  Inspector: {
    GET_WIDGET_DETAILS: createRPCMethod(RPCPrefix.INSPECTOR, "getWidgetDetails"),
  }
};

// 2. Add Tool Definition
{
  name: "get_widget_details",
  description: "Get detailed information about a specific widget",
  inputSchema: {
    type: "object",
    properties: {
      port: {
        type: "number",
        description: "Port number where the Flutter app is running (defaults to 8181)",
      },
      widgetId: {
        type: "string",
        description: "ID of the widget to inspect",
      }
    },
    required: ["widgetId"],
  }
}

// 3. Implement Handler
case "get_widget_details": {
  const port = handlePortParam();
  const { widgetId } = request.params.arguments as { widgetId: string };
  if (!widgetId) {
    throw new McpError(
      ErrorCode.InvalidParams,
      "widgetId parameter is required"
    );
  }
  await this.verifyFlutterDebugMode(port);
  return wrapResponse(
    this.invokeFlutterExtension(port, FlutterRPC.Inspector.GET_WIDGET_DETAILS, {
      widgetId,
    })
  );
}

Common Patterns

  1. Parameter Validation

    • Always validate required parameters
    • Use TypeScript types for type safety
    • Throw McpError with clear messages
  2. Error Handling

    • Use try-catch blocks for async operations
    • Verify Flutter debug mode when needed
    • Handle connection errors
  3. Response Wrapping

    • Use wrapResponse for consistent formatting
    • Handle both success and error cases
    • Format response data appropriately
  4. Port Handling

    • Use handlePortParam() for port management
    • Default to 8181 if not specified
    • Validate port number

Notes for AI Agents

When implementing methods from todo.yaml:

  1. Follow the step-by-step guide above
  2. Use the example implementation as a template
  3. Ensure all checklist items are completed
  4. Add proper error handling and parameter validation
  5. Follow the common patterns section
  6. Test the implementation thoroughly

For each new method:

  1. Check the method's group (UI, DartIO, Inspector, etc.)
  2. Determine required parameters from method name and context
  3. Implement following the standard patterns
  4. Add appropriate error handling
  5. Follow the existing code style

Smithery Integration

The Flutter Inspector is registered with Smithery's registry, making it discoverable and usable by other AI tools through a standardized interface.

Integration Architecture

┌─────────────────┐     ┌──────────────┐     ┌──────────────┐     ┌─────────────────┐     ┌─────────────┐
│                 │     │              │     │              │     │                 │     │             │
│  Flutter App    │<--->│  DevTools    │<--->│  Forwarding  │<--->│   MCP Server   │<--->│  Smithery   │
│  (Debug Mode)   │     │  Extension   │     │  Server      │     │   (Registered) │     │  Registry   │
│                 │     │              │     │              │     │                 │     │             │
└─────────────────┘     └──────────────┘     └──────────────┘     └─────────────────┘     └─────────────┘

🤝 Contributing

Contributions are welcome! Please feel free to submit pull requests or report issues on the GitHub repository.

📖 Learn More

📄 License

MIT - Feel free to use in your projects!


Flutter and Dart are trademarks of Google LLC.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • momi
  • Provides initial medical assessments and advice.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • huahuayu
  • A unified API gateway for integrating multiple etherscan-like blockchain explorer APIs with Model Context Protocol (MCP) support for AI assistants.

  • zhaoyunxing92
  • 本项目是一个钉钉MCP(Message Connector Protocol)服务,提供了与钉钉企业应用交互的API接口。项目基于Go语言开发,支持员工信息查询和消息发送等功能。

  • deemkeen
  • control your mbot2 with a power combo: mqtt+mcp+llm

  • justmywyw
  • Short and sweet example MCP server / client implementation for Tools, Resources and Prompts.

    Reviews

    2 (1)
    Avatar
    user_uDEWYD7Y
    2025-04-15

    As a dedicated user of Mcp_mlb_statsapi, I must say this product is a game-changer for baseball stats enthusiasts. The API is incredibly efficient and provides detailed MLB statistics seamlessly. Kudos to mpizza for creating such a reliable tool. Highly recommend checking it out at https://mcp.so/server/mcp_mlb_statsapi/mpizza for anyone who needs accurate and timely baseball data.