
lance-mcp
3 years
Works with Finder
1
Github Watches
7
Github Forks
46
Github Stars
🗄️ LanceDB MCP Server for LLMS
A Model Context Protocol (MCP) server that enables LLMs to interact directly the documents that they have on-disk through agentic RAG and hybrid search in LanceDB. Ask LLMs questions about the dataset as a whole or about specific documents.
✨ Features
- 🔍 LanceDB-powered serverless vector index and document summary catalog.
- 📊 Efficient use of LLM tokens. The LLM itself looks up what it needs when it needs.
- 📈 Security. The index is stored locally so no data is transferred to the Cloud when using a local LLM.
🚀 Quick Start
To get started, create a local directory to store the index and add this configuration to your Claude Desktop config file:
MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"lancedb": {
"command": "npx",
"args": [
"lance-mcp",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Prerequisites
- Node.js 18+
- npx
- MCP Client (Claude Desktop App for example)
- Summarization and embedding models installed (see config.ts - by default we use Ollama models)
-
ollama pull snowflake-arctic-embed2
-
ollama pull llama3.1:8b
-
Demo
Local Development Mode:
{
"mcpServers": {
"lancedb": {
"command": "node",
"args": [
"PATH_TO_LANCE_MCP/dist/index.js",
"PATH_TO_LOCAL_INDEX_DIR"
]
}
}
}
Use npm run build
to build the project.
Use npx @modelcontextprotocol/inspector dist/index.js PATH_TO_LOCAL_INDEX_DIR
to run the MCP tool inspector.
Seed Data
The seed script creates two tables in LanceDB - one for the catalog of document summaries, and another one - for vectorized documents' chunks. To run the seed script use the following command:
npm run seed -- --dbpath <PATH_TO_LOCAL_INDEX_DIR> --filesdir <PATH_TO_DOCS>
You can use sample data from the docs/ directory. Feel free to adjust the default summarization and embedding models in the config.ts file. If you need to recreate the index, simply rerun the seed script with the --overwrite
option.
Catalog
- Document summary
- Metadata
Chunks
- Vectorized document chunk
- Metadata
🎯 Example Prompts
Try these prompts with Claude to explore the functionality:
"What documents do we have in the catalog?"
"Why is the US healthcare system so broken?"
📝 Available Tools
The server provides these tools for interaction with the index:
Catalog Tools
-
catalog_search
: Search for relevant documents in the catalog
Chunks Tools
-
chunks_search
: Find relevant chunks based on a specific document from the catalog -
all_chunks_search
: Find relevant chunks from all known documents
📜 License
This project is licensed under the MIT License - see the LICENSE file for details.
相关推荐
I find academic articles and books for research and literature reviews.
Converts Figma frames into front-end code for various mobile frameworks.
Confidential guide on numerology and astrology, based of GG33 Public information
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Advanced software engineer GPT that excels through nailing the basics.
Delivers concise Python code and interprets non-English comments
💬 MaxKB is a ready-to-use AI chatbot that integrates Retrieval-Augmented Generation (RAG) pipelines, supports robust workflows, and provides advanced MCP tool-use capabilities.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
MCP server to provide Figma layout information to AI coding agents like Cursor
AI Agents & MCPs & AI Workflow Automation • (280+ MCP servers for AI agents) • AI Automation / AI Agent with MCPs • AI Workflows & AI Agents • MCPs for AI Agents
Reviews

user_JPEUvMG1
Lance-mcp by adiom-data is a fantastic tool for managing and processing data streams with ease. The flexibility and high performance of this application make it a must-have for any serious developer or data scientist. With its seamless integration and user-friendly interface, I highly recommend checking it out. For more details, visit https://github.com/adiom-data/lance-mcp.